REPORT OF AIR POLLUTION SOURCE TESTING OF AN ETHYLENE OXIDE EMISSION-CONTROL SYSTEM OPERATED BY STERIGENICS U.S., LLC. IN QUEENSBURY, NEW YORK ON SEPTEMBER 16, 2021

Submitted to:

NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION
P.O. Box 220
232 Hudson Street
Warrensburg, New York 12885-0220

Submitted by:

STERIGENICS US, LLC. 84 Park Road Queensbury, New York 12804

NYDEC Permit Number 5-5344-00029/0001-1

Prepared by:

ECSI, INC. PO Box 1498 San Clemente, California 92674-1498

September 29, 2021

CONTACT SUMMARY

CLIENT FACILITY

Ms. Laura Hartman
Ms. Alicia Lempka
Manager, Environmental Health and Safety
STERIGENICS US, LLC.
2015 Spring Road, Suite 650
Oak Brook, Illinois 60523
Ms. Alicia Lempka
General Manager
STERIGENICS US, LLC.
84 Park Road
Queensbury, New York 12804

Phone: (630)928-1724 Phone: (518)743-9272

email: <u>lhartman@sterigenics.com</u> email: <u>alempka@sterigenics.com</u>

TEST DATE

September 16, 2021

REGULATORY AGENCY

Mr. Mike Sundberg
Environmental Engineer, Division of Air Resources
NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION
P.O. Box 220
232 Hudson Street
Warrensburg, New York 12885-0220

Phone: (518)623-1231

email: mrsundbe@gw.dec.state.ny.us

TESTING CONTRACTOR

Daniel P. Kremer President ECSI, INC. PO Box 1498 San Clemente, California 92674-1498

Phone: (949)400-9145

email: <u>dankremer@ecsi1.com</u>

TABLE OF CONTENTS

		PAGE NO.
CONT	TACT SUMMARY	i
TABL	LE OF CONTENTS	ii
LIST	OF TABLES	iii
LIST	OF APPENDICES	iv
1.0	INTRODUCTION	1
2.0	EQUIPMENT	2
3.0	TESTING	4
4.0	RULE/COMPLIANCE REQUIREMENTS	5
5.0	TEST METHOD REFERENCE	6
	 5.1 Summary/Introduction 5.2 Volumetric Flow Measurement 5.3 EtO Mass-Emissions Measurement 5.4 Sample Transport 5.5 GC Injection 5.6 GC Conditions 5.7 Calibration Standards 5.8 Sampling Duration 5.9 Mass-Emissions Calculations 	6 6 7 7 8 8 8 8 8
6.0	TEST SCENARIO	11
7.0	QA/QC	12
	7.1 Field Testing Quality Assurance7.2 Calibration Procedures	12 12
8.0	TEST RESULTS	13
TABL	ES	14
APPE	ENDICES	16

LIST OF TABLES

<u>TABLE</u>	<u>DESCRIPTION</u>	PAGE NO.
1	Ethylene Oxide Control Efficiency	15

LIST OF APPENDICES

<u>APPENDIX</u>	DESCRIPTION	PAGE NO
Α	Calibration Data	A-1
В	Run #1 Chromatograms	B-1
С	Run #2 Chromatograms	C-1
D	Run #3 Chromatograms	D-1
E	Field Data & Calculation Worksheets	E-1
F	Gas Certifications	F-1
G	Process Data	G-1

1.0 INTRODUCTION

On Thursday, September 16, 2021, ECSi performed air pollution source testing of an ethylene oxide (EtO) emission-control system operated by Sterigenics U.S., LLC. in Queensbury, New York. The control system tested was a Ceilcote packed tower scrubber emission-control system, which is currently used to control emissions from eleven EtO sterilizer vacuum pumps. The purpose of the testing program was to demonstrate continued compliance with EPA requirements under the current National Emissions Standards for Hazardous Air Pollutants (NESHAP), and with the conditions established in the permit (Number 5-5344-00029/0001-1) granted to Sterigenics US, LLC. by the New York Department of Environmental Conservation (NYDEC).

2.0 EQUIPMENT

The EtO gas-sterilization system is comprised of eleven commercial sterilizers, all discharging through liquid-ring vacuum pumps to a packed-tower acid scrubber emission control device. In compliance with NYDEC and USEPA requirements, and all aeration room vents are discharged to a Donaldson EtO Abator catalytic oxidizer emission control device. In compliance with NYDEC requirements, all chamber exhaust vents ("backvents") are discharged to the same Donaldson EtO Abator catalytic oxidizer emission control device.

The gas-sterilization and emission-control equipment consists of the following:

- Eleven Gas Sterilizers, one 26-pallet chamber (3003 cubic feet), four 13-pallet (1333 cubic feet), four 8-pallet (two: 1155 cubic feet; two: 1200 cubic feet), and two 3-pallet (350 cubic feet) capacity, each comprised of a steam-heated sterilization chamber, a recirculating vacuum pump chamber evacuation system, a chamber backvent valve, and a fugitive emissions exhaust hood;
- Five Aeration Rooms, three 48-pallet (11,340 cubic feet), one 685-pallet (189,642 cubic feet), and one 3764 cubic feet capacity, each comprised of a heated aeration room and an aeration room exhaust system.

Sterilizer vacuum pump emissions are controlled by:

One Ceilcote packed tower acid scrubber, Model SPT-42-120, equipped with a bed of No. 1
Tellerette packing, a 5000-gallon reaction tank/reservoir, a secondary 5000-gallon reaction tank, a
scrubber fluid recirculation system, and an exhaust blower.

Sterilizer backvent and aeration emissions are controlled by:

 One Donaldson EtO Abator System, operated at approximately 6,000 SCFM, equipped with a prefilter, a steam heater, an exhaust gas heat exchanger, a reactive catalyst bed, and an exhaust blower.

3.0 TESTING

EtO source testing was conducted in accordance with the procedures outlined in USEPA CFR40, Part 63.365. EtO emissions monitoring was conducted simultaneously at the inlet and outlet of the Ceilcote scrubber during the first chamber evacuation of the sterilizer exhaust phase of one of the eleven sterilizers. A total of three exhaust-phase test runs were performed.

During the first chamber evacuation of the exhaust phase, inlet EtO emissions were determined using the Ideal Gas Law and the chamber conditions at the beginning and at the end of the first chamber evacuation. During the first chamber evacuation of the exhaust phase, outlet EtO emissions were determined using direct source sample injection into the GC. In accordance with Subpart O 63.365, CARB Method 431 was used for measurement of ethylene oxide concentrations in the source gas streams tested.

All exhaust phase testing was conducted during normal process load conditions, but with an empty sterilization chamber to facilitate the performance of multiple test runs. The testing program was conducted in accordance with the procedures outlined in the following sections.

4.0 RULE/COMPLIANCE REQUIREMENTS

The EtO gas-sterilization and emission-control system at Sterigenics U.S., LLC. was tested to demonstrate compliance with the current federal EPA National Emissions Standard for Hazardous Air Pollutants (NESHAP) for ethylene oxide, and with the requirements specified in the NYDEC Permit. Testing is being performed to demonstrate compliance with the chamber vacuum vent control requirements. The current testing will demonstrate compliance with the following requirements:

- The sterilizer exhaust phase (post exposure vacuum pulses) emissions must be vented to control
 equipment with an EtO emission-reduction efficiency of at least 99 % by weight (USEPA NESHAP
 requirement).
- The sterilizer exhaust phase (post exposure vacuum pulses) emissions must be vented to control
 equipment with an EtO emission-reduction efficiency of at least 99.9 % by weight (NYDEQ permit
 condition).

Testing is required to demonstrate compliance with these requirements. Source testing of the emission-control device is required initially, and may be required periodically thereafter.

5.0 TEST METHOD REFERENCE

5.1 INTRODUCTION

EtO source testing was conducted in accordance with the procedures outlined in USEPA CFR40, Part 63.365. EtO emissions monitoring was conducted simultaneously at the inlet and outlet of the Ceilcote scrubber during the first chamber evacuation of the sterilizer exhaust phase of one of the eleven sterilizers. A total of three exhaust-phase test runs were performed.

During the first chamber evacuation of the exhaust phase, inlet EtO emissions were determined using the Ideal Gas Law and the chamber conditions at the beginning and at the end of the first chamber evacuation. During the first chamber evacuation of the exhaust phase, outlet EtO emissions were determined using direct source sample injection into the GC. In accordance with Subpart O 63.365, CARB Method 431 was used for measurement of ethylene oxide concentrations in the source gas streams tested. All procedures were followed, as documented in the following sections.

All exhaust phase testing was conducted during normal process load conditions, but with an empty sterilization chamber to facilitate the performance of multiple test runs.

Operation and documentation of process conditions was performed by personnel from Sterigenics U.S., LLC. using existing monitoring instruments installed by the manufacturer of the equipment to be tested. In accordance with NYDEC requirements, and the procedures established in USEPA 40 CFR, Part 63.365, Subpart O, scrubber liquor level and glycol concentration were recorded.

5.2 VOLUMETRIC FLOW MEASUREMENT

Exhaust gas flow at the outlet of the scrubber was determined by EPA Method 2C using a standard pitot tube and an inclined-oil manometer. Sampling ports were located upstream of the system exhaust blower, far enough from any flow disturbances to permit accurate flow measurement.

Temperature measurements were obtained from a type K thermocouple and thermometer attached to the sampling probe. Exhaust gas composition was air and <0.001% EtO, with a stack gas molecular weight of 28.51 and a standardized ambient level moisture content of 3 percent by volume.

5.3 CONTROL EFFICIENCY AND MASS EMISSIONS MEASUREMENT

During the first chamber evacuation of the sterilizer exhaust phase, the inlet mass emissions of EtO were determined using the procedures outlined in CFR40, Part 63.365. This method allows the determination of the mass of EtO vented to the inlet of the scrubber through calculations based on the Ideal Gas Law and using the conditions (pressure, temperature, volume) of the sterilization chamber immediately after it has been charged with sterilant gas, and upon conclusion of the first chamber evacuation of the exhaust phase.

The mass of EtO vented to the inlet of the scrubber during the first chamber evacuation of the exhaust phase was determined by calculating the mass of EtO present in the chamber after the first chamber evacuation and subtracting it from the mass of EtO present in the chamber after it has been charged with sterilant gas. The mass of EtO present in the chamber was calculated using Equation 1, shown below in Section 5.9.

During the first chamber evacuation of the sterilizer exhaust phase, EtO emissions from the outlet were determined using direct source sample injection into the GC. The mass of EtO emitted from the outlet was determined using Equation 2, shown below in Section 5.9. Mass-mass control-efficiency of EtO during the sterilizer exhaust phase was calculated by comparing the mass of EtO vented to the system inlet to the mass of EtO vented from the system outlet.

During the sterilization chamber exhaust phase, vented gas was analyzed by an SRI, Model 8610, portable gas chromatograph (GC), equipped with the following: dual, heated sample loops and injectors; dual columns; and dual detectors. A photoionization detector (PID) was used to quantify low-level EtO emissions at the scrubber outlet.

5.4 SAMPLE TRANSPORT

Source gas was pumped to the GC at approximately 1000 cubic centimeters per minute (cc/min) from the sampling ports through a heated Teflon® sample line, with a nominal volume of approximately 75 cubic centimeters (cc) and an outer diameter of 0.25 inch.

5.5 GC INJECTION

Source-gas samples were then injected into the GC which was equipped with two heated sampling loops, each containing a volume of approximately 2cc and maintained at 100 degrees Celsius (C). Injections occurred at approximately one to two-minute intervals. Nitrogen was the carrier gas for the PID.

5.6 GC CONDITIONS

The packed columns for the GC were both operated at 90 degrees C. The columns were stainless steel, 6 feet long, 0.125-inch outer diameter, packed with 1 percent SP-1000 on 60/80 mesh Carbopack B. Any unused sample gas was vented from the GC system back to the inlet of the control device being tested.

5.7 CALIBRATION STANDARDS

The PID was calibrated for low-range ppmv level analyses using gas proportions similar to the following:

- 1) 100 ppmv EtO, balance nitrogen
- 2) 50 ppmv EtO, balance nitrogen (audit gas)
- 3) 10 ppmv EtO, balance nitrogen
- 4) 1 ppmv EtO, balance nitrogen

Each of these calibration standards was in a separate, certified manufacturer's cylinder. Copies of the calibration gas laboratory certificates are attached as Appendix F. Calibration procedures are described in detail in Section 7.2 of this report.

5.8 SAMPLING DURATION

Exhaust phase EtO measurements were taken for the entire duration of the first chamber evacuation, which was approximately 20 minutes. This encompassed a total sampling duration of approximately 20 minutes for each exhaust phase test run.

5.9 CONTROL-EFFICIENCY/MASS-EMISSIONS CALCULATIONS

The following equation was used to calculate mass of EtO discharged to the inlet of the emission-control system during the first chamber evacuation of the sterilizer exhaust phase:

EQUATION 1:

 $W_c = W_{ci} - W_{cf}$

Where:

W_c = Weight of EtO discharged from the sterilization chamber to the emission-control system during the first chamber evacuation, pounds

 $W_{ci} = (mw)(p)(P)(V)/(R)(T)$

(and W_{cf})

Where:

 W_{ci} = Weight of EtO present in the sterilization chamber before the first chamber

evacuation, pounds

W_{cf} = Weight of EtO present in the sterilization chamber after the first chamber evacuation,

pounds

MW = Molecular weight of EtO, 44.05 lb/mol

p = Percent of EtO in chamber

= W_s/W_i

Where:

W_s = Scale-measured weight of EtO charged into sterilization chamber

W_i = Calculated weight of EtO charged into sterilization chamber (@ 100%)

P = Sterilization chamber pressure (after charging/at the end of the 1st evac), psia

V = Sterilization chamber volume, ft³

R = Gas constant, 10.73 psia·ft³/mol·°R

T = Sterilization chamber temperature (after charging/at the end of the 1st evac), °R

Note: Standard conditions are 68°F and 1 atm.

Mass emissions of EtO during the exhaust phase were calculated using the following equation:

EQUATION 2:

MassRate = (VolFlow)(MolWt)(ppmv EtO/10⁶)/(MolVol)

Where:

MassRate = EtO mass flow rate, pounds per minute

VolFlow = Corrected volumetric flow rate, standard cubic feet per minute at 68 degrees F

MolWt = 44.05 pounds EtO per pound mole

ppmv EtO = EtO concentration, parts per million by volume

10⁶ = Conversion factor, ppmv per "cubic foot per cubic foot"

MolVol = 385.32 cubic feet per pound mole at one atmosphere and 68 degrees F

Results of the control-efficiency testing are presented in Section 8.0 and in Table 1.

6.0 TEST SCENARIO

During exhaust phase testing, each sterilizer was tested during normal process load conditions, but with an empty sterilization chamber to facilitate the performance of multiple test runs. A total of three exhaust-phase test runs were performed to verify the performance of the emission-control device. Testing was conducted with an effort to offer minimal disruption to the Sterigenics production schedule. The testing schedule was as follows:

- 1) Testing equipment was set up and calibrated.
- An empty-chamber cycle was started in one of the larger sterilizers. This sterilizer was isolated for test use and designated as a test chamber.
- 3) An empty-chamber cycle was started in another of the larger sterilizers. This sterilizer was isolated for test use and designated as a test chamber.
- 4) An empty-chamber cycle was started in another of the larger sterilizers. This sterilizer was isolated for test use and designated as a test chamber.
- 5) Exhaust Phase Test Run #1 was conducted. Sampling was performed at outlet of the scrubber during the first chamber evacuation of the test chamber. During the performance of the test, only the sterilizer used for the test was allowed to discharge to the scrubber.
- 6) Exhaust Phase Test Run #2 was conducted. Sampling was performed at outlet of the scrubber during the first chamber evacuation of the test chamber. During the performance of the test, only the sterilizer used for the test was allowed to discharge to the scrubber.
- 7) Exhaust Phase Test Run #3 was conducted. Sampling was performed at outlet of the scrubber during the first chamber evacuation of the test chamber. During the performance of the test, only the sterilizer used for the test was allowed to discharge to the scrubber.
- 8) Post calibration check was performed, testing equipment was packed.

7.0 QA/QC

7.1 FIELD TESTING QUALITY ASSURANCE

At the beginning of the test, the sampling system was leak checked at a vacuum of 15 inches of mercury. The sampling system was considered leak free when the flow indicated by the rotameters fell to zero.

At the beginning of the test, a system blank was analyzed to ensure that the sampling system was free of EtO. Ambient air was introduced at the end of the sample line and drawn through the sampling system line to the GC for analysis. The resulting chromatogram also provided a background level for non-EtO components (i.e. ambient air, carbon dioxide, water vapor) which are present in the source gas stream due to the ambient dilution air which is drawn into the emission-control device, and due to the destruction of EtO by the emission-control device which produces carbon dioxide and water vapor. This chromatogram, designated AMB, is included with the calibration data in Appendix A.

7.2 CALIBRATION PROCEDURES

The GC system was calibrated prior to testing. The pre-test calibration procedure included triplicate injections of each concentration of calibration gas, for each detector. The lowest concentration of calibration gas was injected 7-10 times for the detector used at the outlet sampling point, as part of the method detection limit (MDL) determination for the test. The MDL calculations were performed using a spreadsheet provided to ECSi by Ned Shappley of the USEPA Measurement Technology Group, in accordance with USEPA Method 301. The resulting calibration data was entered into the Peaksimple II analytical software, and a calibration curve for the test was established for each detector.

A gas cylinder of similar composition as the calibration gases, but certified by a separate supplier, was used to verify calibration gas composition and GC performance (audit gas). This gas was used as a calibration check at the midpoint of the test, and at the conclusion of the test to verify that the Peaksimple calibration curve for each detector was still accurate within 10% of the mean values established in the multipoint calibration, or a new calibration curve must be generated.

All calibration gases and support gases used were of the highest purity and quality available. A copy of the laboratory certification for each calibration gas is attached as Appendix F.

8.0 TEST RESULTS

The Ceilcote Scrubber was found to have an average EtO control efficiency of 99.994 percent. In accordance with state and federal requirements, sterilizer vacuum pump discharge streams must be vented to control equipment with an EtO emission-reduction efficiency of at least 99.9 percent. The Ceilcote Scrubber met this requirement.

The test results are summarized in Table 1. This tables include results for EtO control efficiency of and mass emissions from the emission-control system. Chromatograms and chromatographic supporting data are attached as Appendices A through D.

TABLES

TABLE 1 COMPLIANCE TESTING RESULTS

ETHYLENE OXIDE CONTROL EFFICIENCY AND MASS EMISSIONS OF AN ETHYLENE OXIDE EMISSION CONTROL SYSTEM

OPERATED BY STERIGENICS U.S., LLC.

IN QUEENSBURY, NEW YORK ON SEPTEMBER 16, 2021

EXHAUST PHASE - STERILIZER VACUUM VENT

Run#	Chamber <u>Number</u>	Stack Flow (dscfm) (1)	Average Outlet Conc. (ppm) (2)	Outlet EtO Mass Flow (lbs/min) (3)	Minutes/ <u>Cycle</u>	Outlet EtO Mass Emissions (lbs)	Inlet EtO Mass Emissions (lbs)	EtO Control Efficiency (%)
1	1	857	0.008	0.0000008	20	0.0000157	50.6	99.99997
2	2	859	0.098	0.0000096	21	0.0002024	48.2	99.99958
3	Е	855	6.53	0.0006380	16	0.0102074	56.6	99.98196
						Average EtO	Control Efficiency:	99.994

Notes: (1) - DSCFM = dry standard cubic feet per minute

(2) - PPM = parts per million by volume

(3) - LBS/MIN = EtO emissions, pounds per minute

APPENDICES

APPENDIX A

Calibration Data

Detection Limit Study

Step 1: Prepare and analyze at least seven standards prepared at or near the estimated detection limit

Step 2: Record and calculate the standard deviation of the replicate measurements.

EtO Std Conc. (ppm):

1.08

Analysis Number	1	2	3	4	5	6	7	8	9	10
Result	15.98	16.04	16.07	16.06	16.04	16.01	15.96	16.09	15.99	16.05

Calculated Standard Deviation

0.0423

Average:

16.03

Step 3 : Determine the Method Detection Limit (MDL) by mulitplying the student T value appropriate for 99% confidence level and the standard deviation estimate with in n-1 degrees of freedom

Number of Replicates	7	8	9	10
T-values	3.143	2.998	2.896	2.821

Method Detection Limit (as peak area):

0.1193

Method Detection Limit (as concentration):

0.0080 ppm EtO

EtO Calibrations

C	:4	_	

Sterigenics - Queensbury, NY

Date:

9/16/2021

INLET - FID

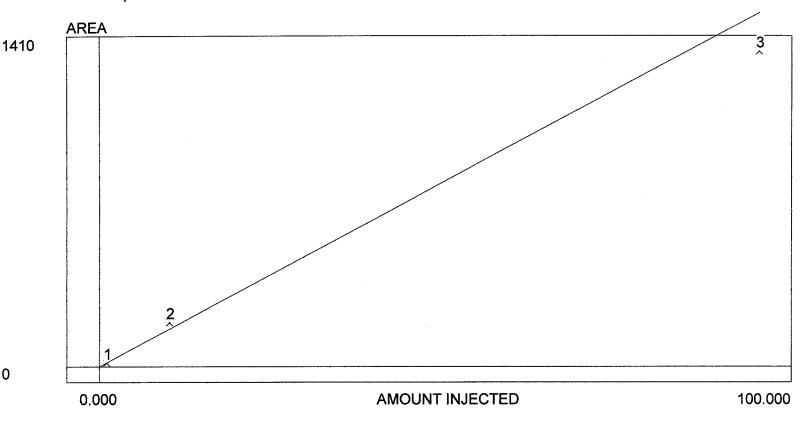
ppm	0	1.08	10.6	100	1,000	10,080
Area 1	0				····	
Area 2	0					
Area 3	0					
AVG.	0	#DIV/0!	#DIV/0!	#DIV/0!		

	AUDIT DIRECT	AUDIT BIAS
	52.0	52.0
	READS	READS
	52.3	52.2
Dev.	0.6%	0.4%

OUTLET - PID

ррт	0	1.08	10.6	100
Area 1	0		201	1410
Area 2	0		195	1410
Area 3	0		194	1410
AVG.	0	16.03	197	1410

	AUDIT DIRECT	AUDIT BIAS
	52.0	52.0
	READS	READS
	52.4	51.9
Dev.	0.8%	-0.2%


	MID CAL		
pr-	PPM	READS	Dev.
INLET			#DIV/0!
OUTLET			#DIV/0!

]	FINAL CAI		
	PPM	READS	Dev.
INLET	52.0		-100.0%
OUTLET	52.0	52.2	0.4%

Component file: eto2-100.cpt

rear	IVallic	Otart	LLI IU	Cambration Inc. Ota Chite	
1	Dead Vol / Air	0.000	0.280	0.000	
2	Ambient H2O	0.280	0.440	0.000	
3	Ethylene Oxide	0.440	0.540	C:\peak454-64bit\0.000\2Sppm\B2021.CAL	
4	Acetaldehyde	0.540	1.000	0.000	

Calibration file: C:\peak454-64bitWin10\2SterQB2021.CAL

Avg slope of curve: 15.84 Y-axis intercept: 0.00 Linearity: 1.00

Number of levels: 3 SD/rel SD of CF's: 2.4/15.2

Y=15.8425X r2: 0.9990

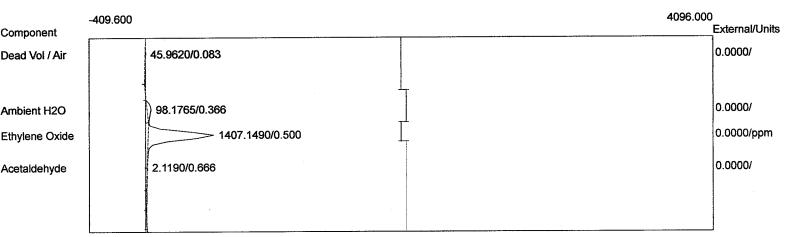
Last calibrated: Thu Sep 16 09:19:14 2021

L∨	ı. Area/nt.	Amount	CF	Current	Previou	is #TPreviou
1	16.030	1.080	14.843	16.030	N/A	N/A
2	197.000	10.600	18.585	197.000	N/A	N/A
3	1410.000	100.000	14.100	1410.000	N/A	N/A

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:22:07


Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

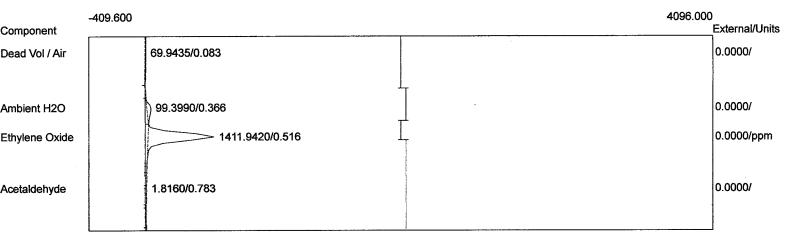
Data file: 2SterQB2021-C01.CHR (c:\peak359)

Sample: 100 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.083	45.9620	0.0000	
Ambient H2O	0.366	98.1765	0.0000	
Ethylene Oxide	0.500	1407.1490	0.0000	ppm
Acetaldehyde	0.666	2.1190	0.0000	
		1553.4065	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal


Analysis date: 09/16/2021 08:23:52 Method: Direct Injection Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C02.CHR (c:\peak359)

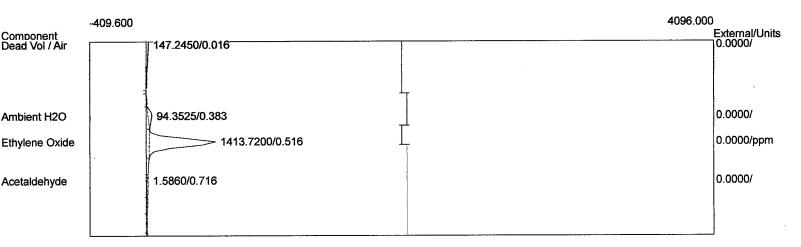
Sample: 100 ppm EtO std Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.083	69.9435	0.0000	
Ambient H2O	0.366	99.3990	0.0000	
Ethylene Oxide	0.516	1411.9420	0.0000	ppm
Acetaldehyde	0.783	1.8160	0.0000	•
		1583 1005	0.000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:25:24


Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C03.CHR (c:\peak359)

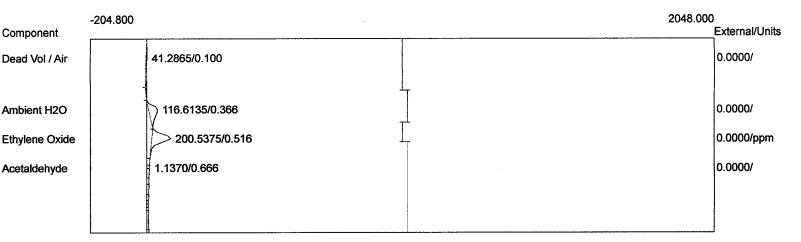
Sample: 100 ppm EtO std Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.016	147.2450	0.0000	
Ambient H2O	0.383	94.3525	0.0000	
Ethylene Oxide	0.516	1413.7200	0.0000	ppm
Acetaldehyde	0.716	1.5860	0.0000	
		1656.9035	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:29:48
Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C04.CHR (c:\peak359)

Sample: 10.6 ppm EtO std

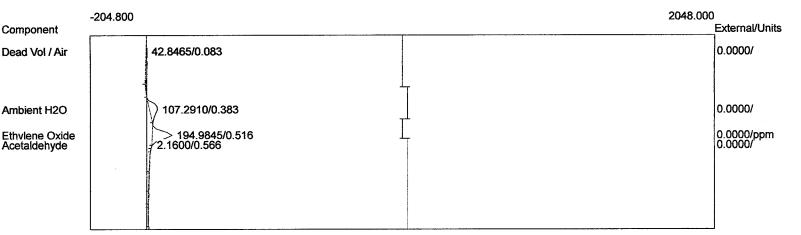
Component	Retention	Area	External	Units
Dead Vol / Air	0.100	41.2865	0.0000	
Ambient H2O	0.366	116.6135	0.0000	
Ethylene Oxide	0.516	200.5375	0.0000	ppm
Acetaldehyde	0.666	1.1370	0.0000	•
		359.5745	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:33:29 Method: Direct Injection

Description: CHANNEL 2 - PID


Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C05.CHR (c:\peak359)

Sample: 10.6 ppm EtO std

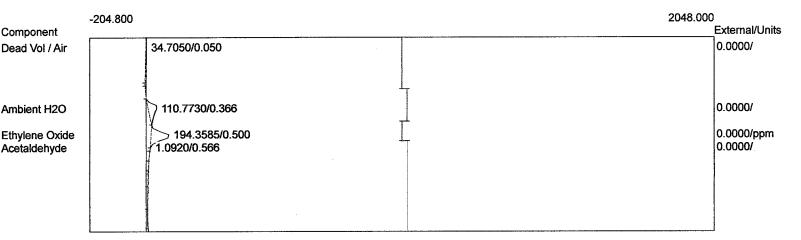
Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.083	42.8465	0.0000	
Ambient H2O	0.383	107.2910	0.0000	
Ethylene Oxide	0.516	194.9845	0.0000	ppm
Acetaldehyde	0.566	2.1600	0.0000	
		347.2820	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:36:13 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C06.CHR (c:\peak359)

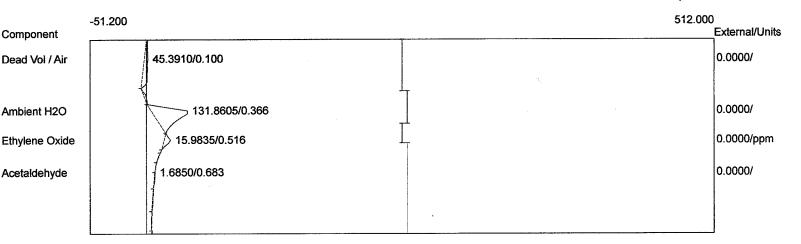
Sample: 10.6 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.050	34.7050	0.0000	
Ambient H2O	0.366	110.7730	0.0000	
Ethylene Oxide	0.500	194.3585	0.0000	ppm
Acetaldehyde	0.566	1.0920	0.0000	
		340.9285	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:38:33 Method: Direct Injection Description: CHANNEL 2 - PID


Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C07.CHR (c:\peak359)

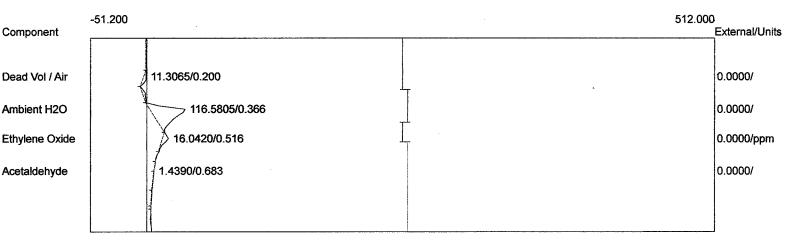
Sample: 1.08 ppm EtO std

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.100	45.3910	0.0000	
Ambient H2O	0.366	131.8605	0.0000	
Ethylene Oxide	0.516	15.9835	0.0000	ppm
Acetaldehyde	0.683	1.6850	0.0000	
		194.9200	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal


Analysis date: 09/16/2021 08:43:08
Method: Direct Injection

Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C08.CHR (c:\peak359)

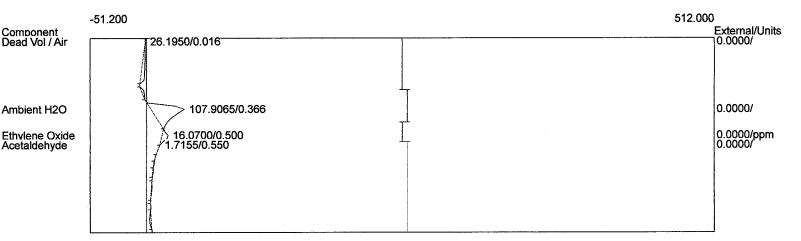
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.200	11.3065	0.0000	
Ambient H2O	0.366	116.5805	0.0000	
Ethylene Oxide	0.516	16.0420	0.0000	ppm
Acetaldehyde	0.683	1.4390	0.0000	
		145.3680	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:47:53


Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C09.CHR (c:\peak359)

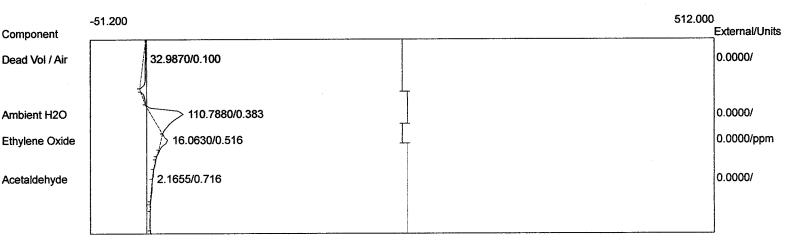
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.016	26.1950	0.0000	
Ambient H2O	0.366	107.9065	0.0000	
Ethylene Oxide	0.500	16.0700	0.0000	ppm
Acetaldehyde	0.550	1.7155	0.0000	
		151.8870	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:50:53 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C10.CHR (c:\peak359)

Sample: 1.08 ppm EtO std

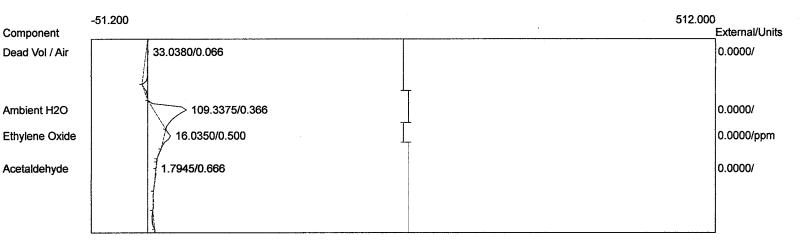
Component	Retention	Area	External	Units
Dead Vol / Air	0.100	32.9870	0.0000	
Ambient H2O	0.383	110.7880	0.0000	
Ethylene Oxide	0.516	16.0630	0.0000	ppm
Acetaldehyde	0.716	2.1655	0.0000	
		162.0035	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:54:55
Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B


Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt

Data file: 2SterQB2021-C11.CHR (c:\peak359)

Sample: 1.08 ppm EtO std

Operator: D. Kremer

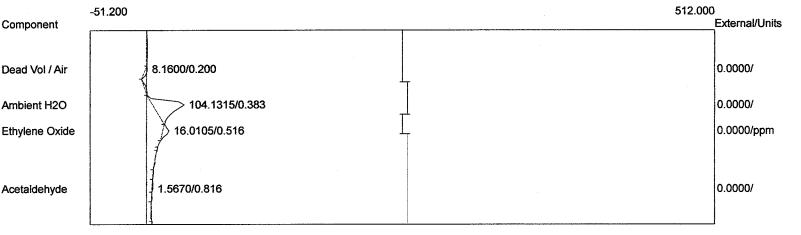
ontrol filename: DEFAULT.CON

Component	Retention	Area	External	Units
Dead Vol / Air	0.066	33.0380	0.0000	
Ambient H2O	0.366	109.3375	0.0000	
Ethylene Oxide	0.500	16.0350	0.0000	ppm
Acetaldehyde	0.666	1.7945	0.0000	
		160.2050	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 08:57:24


Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C12.CHR (c:\peak359)

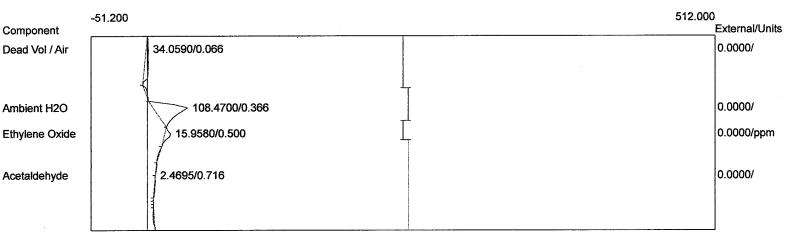
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.200	8.1600	0.0000	
Ambient H2O	0.383	104.1315	0.0000	
Ethylene Oxide	0.516	16.0105	0.0000	ppm
Acetaldehyde	0.816	1.5670	0.0000	
		129.8690	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:02:33 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C13.CHR (c:\peak359)

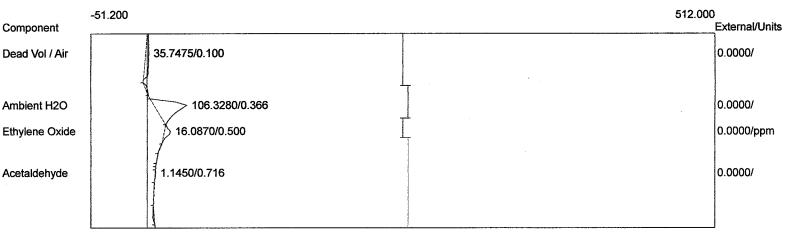
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.066	34.0590	0.0000	
Ambient H2O	0.366	108.4700	0.0000	
Ethylene Oxide	0.500	15.9580	0.0000	ppm
Acetaldehyde	0.716	2.4695	0.0000	
		160.9565	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:06:12 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C14.CHR (c:\peak359)

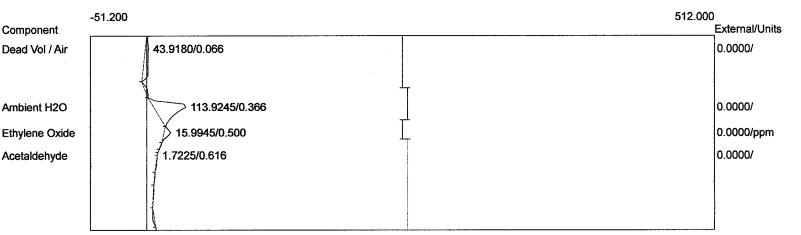
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.100	35.7475	0.0000	
Ambient H2O	0.366	106.3280	0.0000	
Ethylene Oxide	0.500	16.0870	0.0000	ppm
Acetaldehyde	0.716	1.1450	0.0000	• •
		159.3075	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:11:56 Method: Direct Injection


Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C15.CHR (c:\peak359)

Sample: 1.08 ppm EtO std

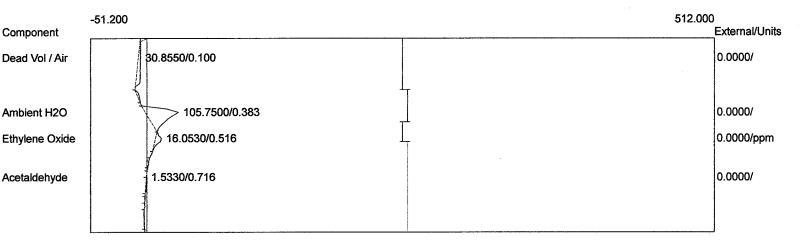
Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.066	43.9180	0.0000	
Ambient H2O	0.366	113.9245	0.0000	
Ethylene Oxide	0.500	15.9945	0.0000	ppm
Acetaldehyde	0.616	1.7225	0.0000	
		175.5595	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:13:49
Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C16.CHR (c:\peak359)

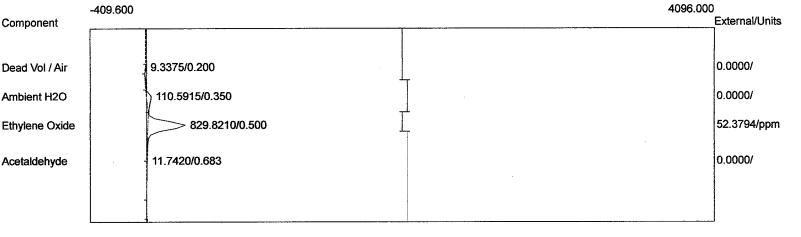
Sample: 1.08 ppm EtO std

Component	Retention	Area	External	Units
Dead Vol / Air	0.100	30.8550	0.0000	
Ambient H2O	0.383	105.7500	0.0000	
Ethylene Oxide	0.516	16.0530	0.0000	ppm
Acetaldehyde	0.716	1.5330	0.0000	
		154 1910	0.0000	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:18:20 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C17.CHR (c:\peak359)

Sample: 52.0 ppm EtO std Operator: D. Kremer

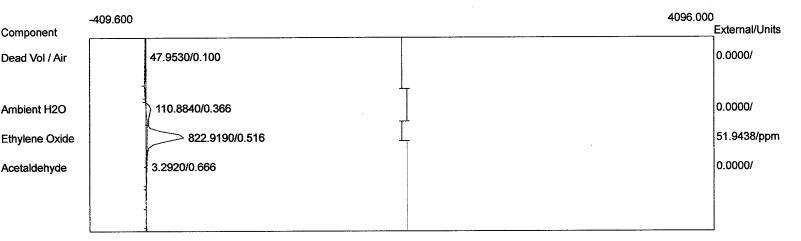
Component	Retention	Area	External	Utilis
Dead Vol / Air	0.200	9.3375	0.0000	
Ambient H2O	0.350	110.5915	0.0000	
Ethylene Oxide	0.500	829.8210	52.3794	ppm
Acetaldehyde	0.683	11.7420	0.0000	
		961.4920	52.3794	

Client: Sterigenics Queensbury

Client ID: PreCal

Analysis date: 09/16/2021 09:22:39 Method: Direct Injection Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B


Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C18.CHR (c:\peak359)

Sample: 52.0 ppm EtO std

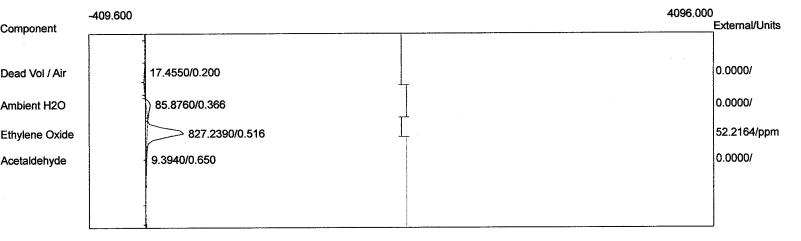
Operator: D. Kremer

Comments: Sample Line Bias Cal

Component	Retention	Area	External	Units
Dead Vol / Air	0.100	47.9530	0.0000	
Ambient H2O	0.366	110.8840	0.0000	
Ethylene Oxide	0.516	822.9190	51.9438	ppm
Acetaldehyde	0.666	3.2920	0.0000	
		985.0480	51.9438	

Client: Sterigenics Queensbury

Client ID: PostCal

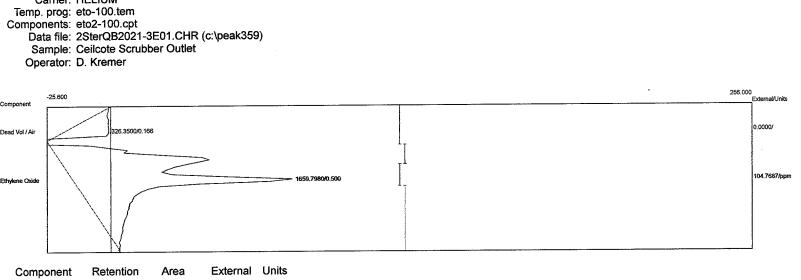

Analysis date: 09/16/2021 11:48:34 Method: Direct Injection Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
ontrol filename: DEFAULT.CON

Data file: 2SterQB2021-C19.CHR (c:\peak359)

Sample: 52.0 ppm EtO std



Component	Retention	Area	Externai	Units
Dead Vol / Air	0.200	17.4550	0.0000	
Ambient H2O	0.366	85.8760	0.0000	
Ethylene Oxide	0.516	827.2390	52.2164	ppm
Acetaldehyde	0.650	9.3940	0.0000	
		939.9640	52.2164	

APPENDIX B

Run #1 Chromatograms

Client ID: Run#3Exh Analysis date: 09/16/2021 11:02:01 Method: Direct Injection

Client: Sterigenics Queensbury

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

0.166

0.500

Dead Vol / Air Ethylene Oxide 326.3500

0.0000

1659.7980 104.7687 ppm

1986.1480 104.7687

Data file: 2SterQB2021-1E01.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet
Operator: D. Kremer

Component

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-51:200

-

Lab name: ECSi

Client ID: Run#1Exh Analysis date: 09/16/2021 10:18:01

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt

Client: Sterigenics Queensbury

Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

0.166

0.383

Dead Vol / Air

Ambient H2O

335.2780

1386.9590 1722.2370 0.0000

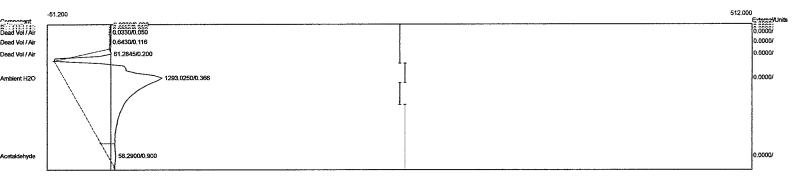
0.0000

Lab name: ECSi Client: Sterigenics Queensbury

Client ID: Run#1Exh

Analysis date: 09/16/2021 10:19:08

Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E02.CHR (c:\peak359)

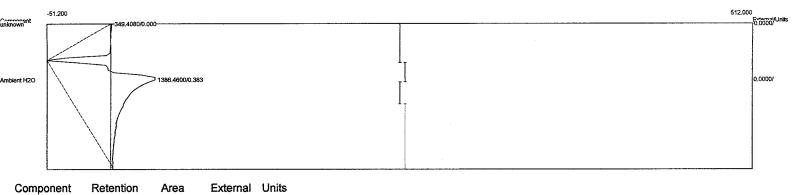
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.016	0.1115	0.0000	
Dead Vol / Air	0.033	0.0830	0.0000	
Dead Vol / Air	0.050	0.0330	0.0000	
Dead Vol / Air	0.116	0.6430	0.0000	
Dead Vol / Air	0.200	61.2845	0.0000	
Ambient H2O	0.366	1293.0250	0.0000	
Acetaldehyde	0.900	58.2900	0.0000	

1413.4700 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:20:14 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E03.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Retention

Area

External Units

Ambient H2O

0.383 1386.4600

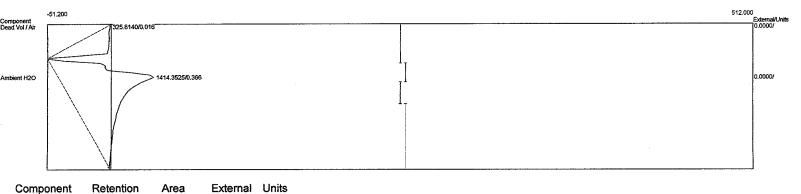
0.0000

1386.4600

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh

Analysis date: 09/16/2021 10:21:22

Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E04.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component 0.016 325.8140 Dead Vol / Air Ambient H2O

Area

0.0000 0.0000

0.366 1414.3525

1740.1665

Components: eto2-100.cpt Data file: 2SterQB2021-1E05.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet Operator: D. Kremer -51.200 unknown 312.3330/0.000 > 1380.0170/0.366 0.0000/ Ambient H2O

Component

Lab name: ECSi

Client ID: Run#1Exh Analysis date: 09/16/2021 10:22:28

Carrier: HELIUM Temp. prog: eto-100.tem

Client: Sterigenics Queensbury

Method: Direct Injection

Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Retention

Area

External Units

Ambient H2O

0.366

1380.0170 0.0000

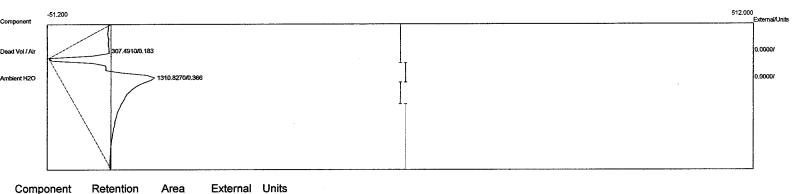
1380.0170

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh

Analysis date: 09/16/2021 10:23:42

Method: Direct Injection

Description: CHANNEL 2 - PID


Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-1E06.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component Retention Dead Vol / Air

Ambient H2O

0.183 0.366

Area 307.4910 1310.8270

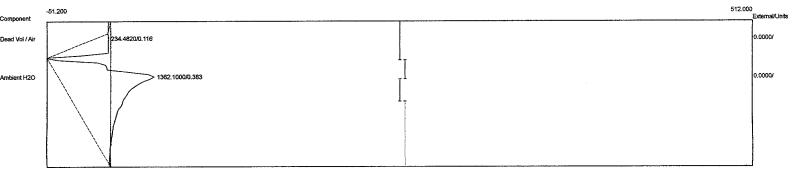
0.0000 0.0000

1618.3180

Lab name: ECSi Client: Sterigenics Queensbury

Client ID: Run#1Exh

Analysis date: 09/16/2021 10:24:51 Method: Direct Injection


Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-1E07.CHR (c:\peak359)

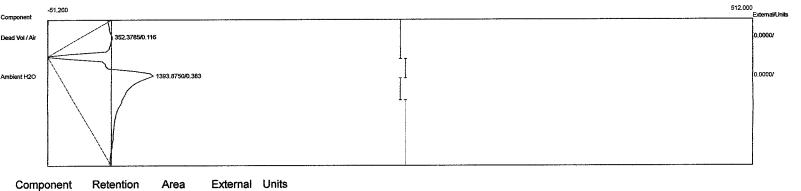
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Retention Component Area 234.4820 0.0000 Dead Vol / Air 0.116 Ambient H2O 0.0000 0.383 1362.1000

> 0.0000 1596.5820

Lab name: ECSi Client: Sterigenics Queensbury


Client ID: Run#1Exh

Analysis date: 09/16/2021 10:26:10 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E08.CHR (c:\peak359)

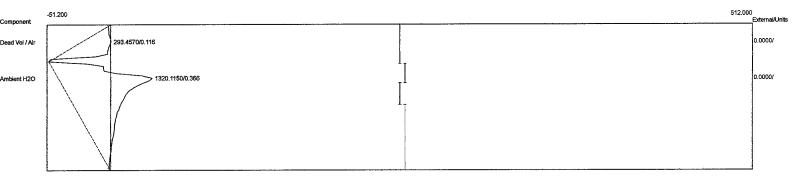
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Dead Vol / Air 0.116 Ambient H2O

352.3785 0.383 1393.8750

0.0000 0.0000


1746.2535 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:27:29 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E09.CHR (c:\peak359)

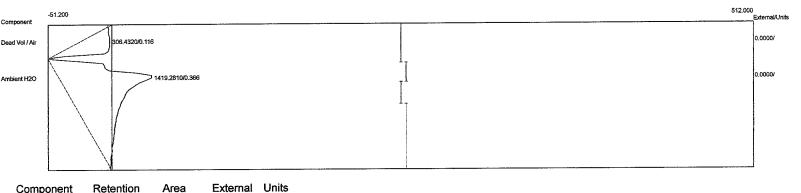
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component Retention Area External Units Dead Vol / Air 0.116 293.4570 0.0000 0.0000 Ambient H2O 0.366 1320.1150

> 1613.5720 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:28:47 Method: Direct Injection


Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem

Components: eto2-100.cpt Data file: 2SterQB2021-1E10.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component Dead Vol / Air Ambient H2O

0.116

Retention

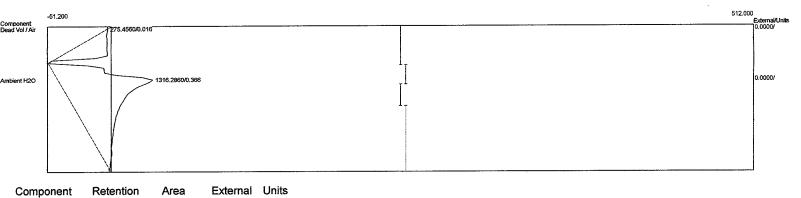
Area 306.4320 0.366 1419.2810

0.0000 0.0000

1725.7130

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:29:58 Method: Direct Injection

Description: CHANNEL 2 - PID


Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-1E11.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

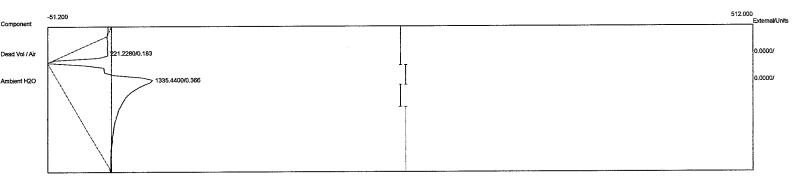
Dead Vol / Air Ambient H2O

0.016 275.4560 0.366 1316.2860

0.0000 0.0000

0.0000 1591.7420

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:31:09 Method: Direct Injection


Description: CHANNEL 2 - PID

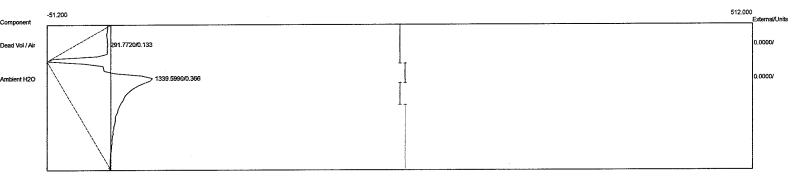
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E12.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component Retention Area External Units Dead Vol / Air 0.183 221.2280 0.0000 0.0000 Ambient H2O 0.366 1335.4400 1556.6680 0.0000


Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:32:22 Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E13.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

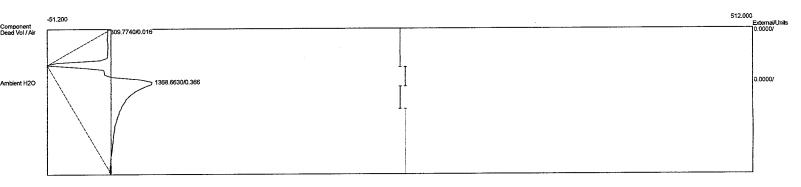
Operator: D. Kremer

Component Retention Area External Units Dead Vol / Air 0.133 291.7720 0.0000 0.0000 Ambient H2O 0.366 1339.5990

> 1631.3710 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh

Analysis date: 09/16/2021 10:33:39


Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E14.CHR (c:\peak359)

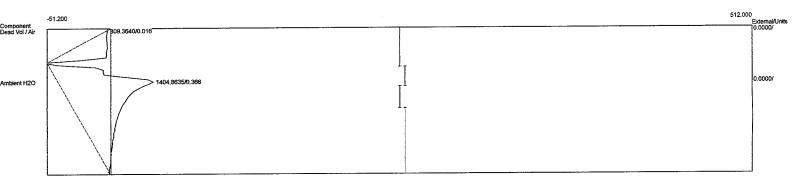
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Retention Component Area 0.016 309.7740 0.0000 Dead Vol / Air Ambient H2O 1368.6630 0.0000 0.366

> 1678.4370 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh


Analysis date: 09/16/2021 10:35:08 Method: Direct Injection

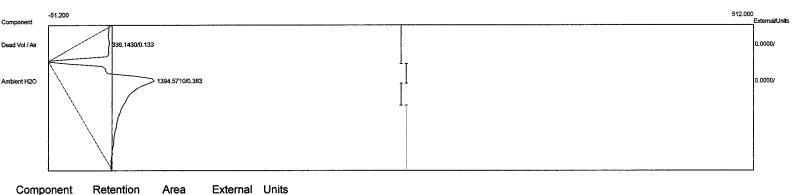
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-1E15.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Component Retention Area Dead Vol / Air 309.3640 0.0000 0.016 Ambient H2O 0.0000 0.366 1404.8635


> 0.0000 1714.2275

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#1Exh Analysis date: 09/16/2021 10:36:25 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-1E16.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component Dead Vol / Air 0.133 336.1430 0.0000 0.0000 Ambient H2O 0.383 1394.5710

> 1730.7140 0.0000

APPENDIX C

Run #2 Chromatograms

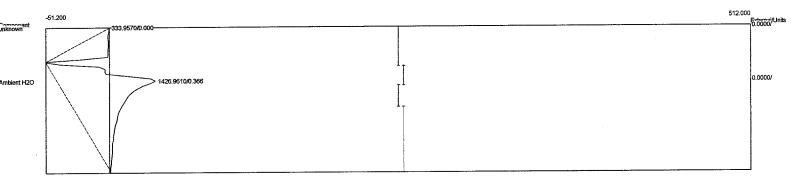
Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E01.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet
Operator: D. Kremer

 Component
 Retention
 Area
 External
 Units

 Dead Vol / Air
 0.116
 327.6325
 0.0000

 Ambient H2O
 0.383
 1407.9190
 0.0000

Lab name: ECSi


Client: Sterigenics Queensbury Client ID: Run#2Exh Analysis date: 09/16/2021 10:39:20

1735.5515 0.0000

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#2Exh Analysis date: 09/16/2021 10:40:29 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E02.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component

Retention

Area -

External Units

Ambient H2O

0.366

1426.9610

0.0000

1426.9610

Carrier: HELIUM
Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E03.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet
Operator: D. Kremer

51.200
512.000
0,0000/Units

Component Re

Retention

Lab name: ECSi Client: Sterigenics Queensbury

Method: Direct Injection

Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Client ID: Run#2Exh Analysis date: 09/16/2021 10:41:46

Area

External Units

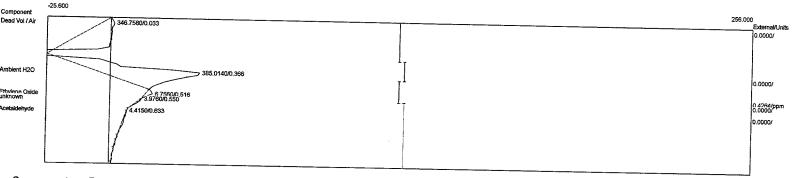
Ambient H2O

0.383

83 1387.7040

0.0000

1387.7040


Client ID: Run#2Exh Analysis date: 09/16/2021 10:43:07 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem Components: eto2-100.cpt

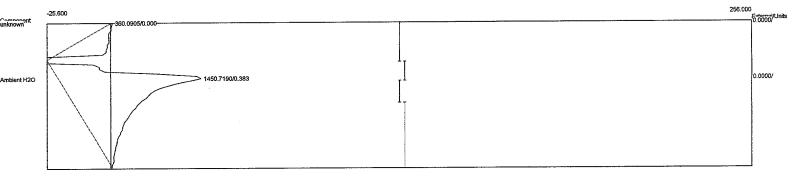
Data file: 2SterQB2021-2E04.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide Acetaldehyde	0.033 0.366 0.516 0.633	346.7580 385.0140 6.7560 4.4150	0.0000 0.0000 0.4264 0.0000	ppm

742.9430 0.4264 Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#2Exh


Analysis date: 09/16/2021 10:44:38 Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E05.CHR (c:\peak359)

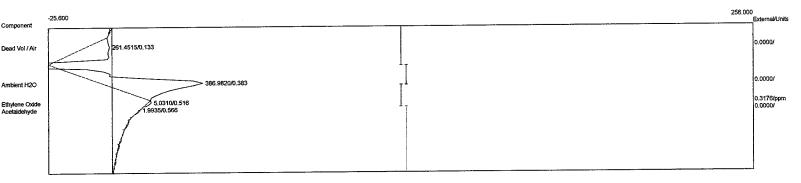
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Component Retention Area 1450.7190 0.0000 Ambient H2O 0.383

> 0.0000 1450.7190

Client: Sterigenics Queensbury


Client ID: Run#2Exh

Analysis date: 09/16/2021 10:45:55 Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-2E06.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

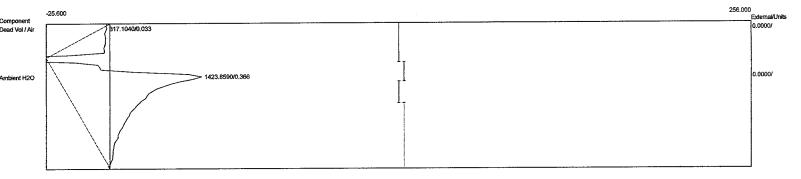
Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide Acetaldehyde	0.133 0.383 0.516 0.566	261.4515 386.9820 5.0310 1.9935	0.0000 0.0000 0.3176 0.0000	ppm
		655.4580	0.3176	

Client: Sterigenics Queensbury

Client ID: Run#2Exh

Analysis date: 09/16/2021 10:47:27 Method: Direct Injection

Description: CHANNEL 2 - PID


Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-2E07.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet Operator: D. Kremer

External Units Retention Area Component 0.0000 0.033 317.1040 Dead Vol / Air 1423.8590 0.0000 Ambient H2O 0.366

> 0.0000 1740.9630

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E08.CHR (c:\peak359) Sample: Ceilcote Scrubber Outlet Operator: D. Kremer 256.000 -25.600 0.0000/ 322,3840/0.200 0.0000/

Component 322.3840 0.0000 0.200 Dead Vol / Air 0.366 1415.3010 0.0000 Ambient H2O 0.0000 1737.6850

Area

Retention

External Units

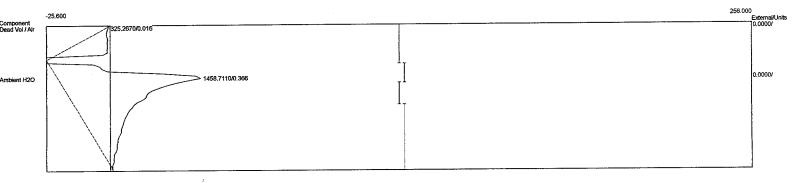
Lab name: ECSi

Client ID: Run#2Exh Analysis date: 09/16/2021 10:48:40 Method: Direct Injection

Client: Sterigenics Queensbury

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Client: Sterigenics Queensbury Client ID: Run#2Exh


Analysis date: 09/16/2021 10:50:01 Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-2E09.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Component Retention Area 0.016 325.2670 0.0000 Dead Vol / Air 0.0000 Ambient H2O 0.366 1458.7110

> 1783.9780 0.0000

Data file: 2SterQB2021-2E10.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet
Operator: D. Kremer

25.600

256.000

Ambient H2O

1428.4420/0.366

Lab name: ECSi

Client ID: Run#2Exh Analysis date: 09/16/2021 10:51:29

Temp. prog: eto-100.tem Components: eto2-100.cpt

Client: Sterigenics Queensbury

Method: Direct Injection

Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Retention

0.366

Component

Ambient H2O

Area

1428.4420

1428.4420

External Units

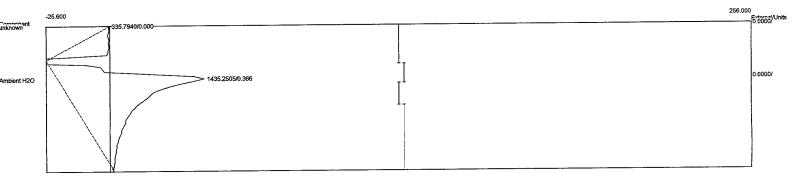
0.0000

0.0000

Lab name: ECSi Client: Sterigenics Queensbury

Client ID: Run#2Exh

Analysis date: 09/16/2021 10:52:56 Method: Direct Injection


Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem

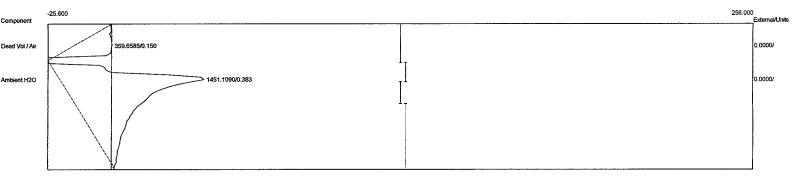
Components: eto2-100.cpt
Data file: 2SterQB2021-2E11.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Retention Area Component 0.0000 0.366 1435.2505 Ambient H2O

> 0.0000 1435.2505


Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#2Exh Analysis date: 09/16/2021 10:54:13 Method: Direct Injection
Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

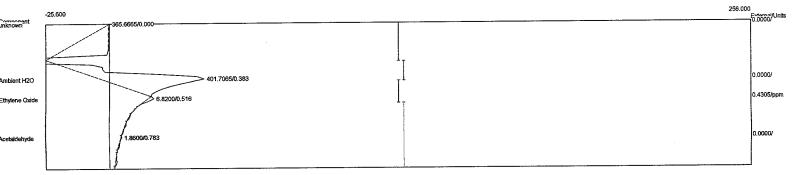
Carrier: HELIUM Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E12.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

External Units Component Retention Area Dead Vol / Air 0.150 359.6585 0.0000 0.0000 Ambient H2O 0.383 1451.1090 1810.7675 0.0000

Client: Sterigenics Queensbury


Client ID: Run#2Exh

Analysis date: 09/16/2021 10:55:34 Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E13.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

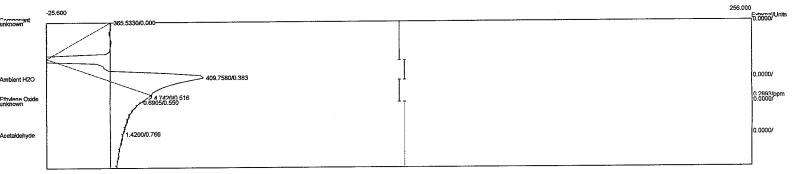
Operator: D. Kremer

Component	Retention	Area	External	Units
Ambient H2O	0.383	401.7065	0.0000	
Ethylene Oxide	0.516	6.8200	0.4305	ppm
Acetaldehyde	0.783	1.8600	0.0000	

410.3865 0.4305

Client: Sterigenics Queensbury

Client ID: Run#2Exh


Analysis date: 09/16/2021 10:56:53 Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

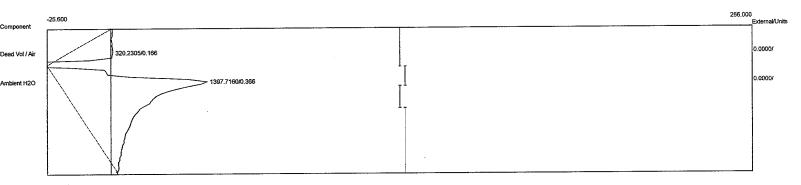
Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E14.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Ambient H2O	0.383	409.7580	0.0000	ppm
Ethylene Oxide	0.516	4.7420	0.2993	
Acetaldehyde	0.766	1.4200	0.0000	

0.2993 415.9200


Client: Sterigenics Queensbury

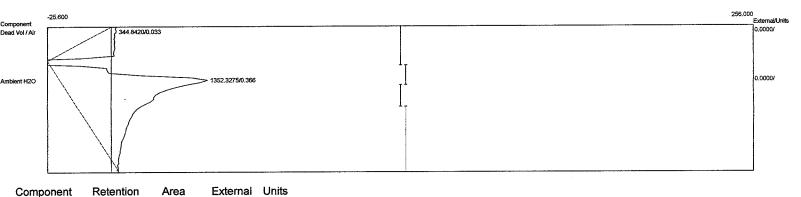
Client ID: Run#2Exh

Analysis date: 09/16/2021 10:58:10 Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E15.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet Operator: D. Kremer

External Units Component Retention Area 0.0000 0.166 320.2305 Dead Vol / Air 0.0000 0.366 1397.7160 Ambient H2O 0.0000 1717.9465


Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#2Exh Analysis date: 09/16/2021 10:59:13 Method: Direct Injection Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-2E16.CHR (c:\peak359)

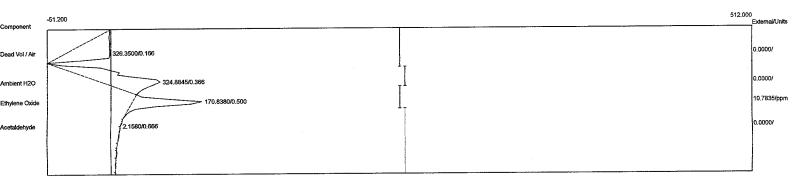
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Retention Component Area 0.0000 0.033 344.8420 Dead Vol / Air 0.366 1352.3275 0.0000 Ambient H2O 1697.1695 0.0000

APPENDIX D

Run #3 Chromatograms



Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:02:01 Method: Direct Injection Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-3E01.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

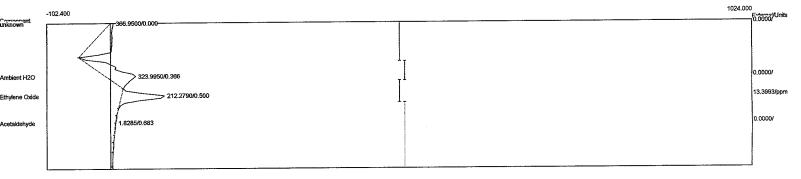
Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide Acetaldehyde	0.166 0.366 0.500 0.666	326.3500 324.8845 170.8380 2.1580	0.0000 0.0000 10.7835 0.0000	ppm

824.2305 10.7835

Client: Sterigenics Queensbury

Client ID: Run#3Exh


Analysis date: 09/16/2021 11:03:28 Method: Direct Injection

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-3E02.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Ambient H2O	0.366	323.9950	0.0000	ppm
Ethylene Oxide	0.500	212.2790	13.3993	
Acetaldehyde	0.683	1.8285	0.0000	

538.1025 13.3993

External Units

10.1331 ppm

0.0000

0.0000

10.1331

Lab name: ECSi

Client ID: Run#3Exh Analysis date: 09/16/2021 11:04:54 Method: Direct Injection

Client: Sterigenics Queensbury

Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Retention

0.383

0.516

0.716

Component

Ambient H2O Ethylene Oxide Acetaldehyde Area

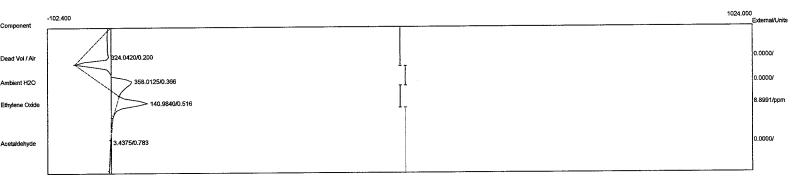
308.0550

160.5340

3.9265 472.5155

Client: Sterigenics Queensbury Client ID: Run#3Exh

Analysis date: 09/16/2021 11:06:05 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B

Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-3E04.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide	0.200 0.366 0.516	324.0420 358.0125 140.9840	0.0000 0.0000 8.8991	ppm
Acetaldehyde	0.783	3.4375	0.0000	•

8.8991 826.4760


Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:07:24 Method: Direct Injection

Description: CHANNEL 2 - PID

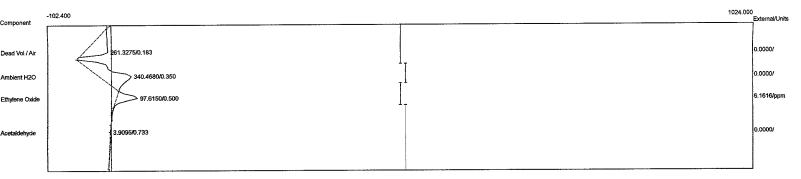
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-3E05.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Alea	External Onlis	•
Dead Vol / Air	0.133	365.1780	0.0000	
Ambient H2O	0.383	328.0825	0.0000	
Ethylene Oxide	0.516	95.9360	6.0556 ppm	
Acetaldehyde	0.700	4.7400	0.0000	
		793 9365	6.0556	

793.9365


Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:08:36

Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-3E06.CHR (c:\peak359)
Sample: Ceilcote Scrubber Outlet

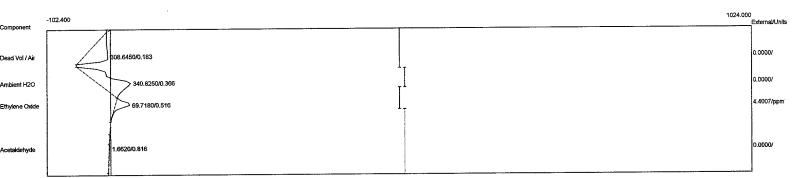
Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.183	261.3275	0.0000	ppm
Ambient H2O	0.350	340.4680	0.0000	
Ethylene Oxide	0.500	97.6150	6.1616	
Acetaldehyde	0.733	3.9095	0.0000	

703.3200 6.1616

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:09:49

Method: Direct Injection


Description: CHANNEL 2 - PID Column: 1% SP-1000, Carbopack B

Carrier: HELIUM Temp. prog: eto-100.tem

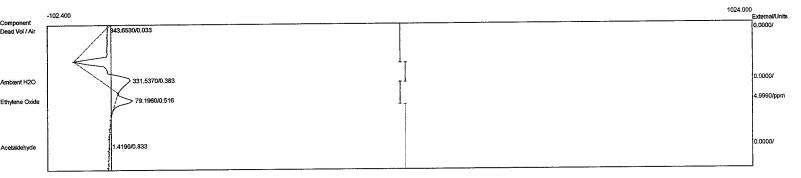
Components: eto2-100.cpt
Data file: 2SterQB2021-3E07.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.183	308.6450	0.0000	
Ambient H2O	0.366	340.8250	0.0000	
Ethylene Oxide	0.516	69.7180	4.4007	ppm
Acetaldehyde	0.816	1.6620	0.0000	

720.8500 4.4007


Client: Sterigenics Queensbury Client ID: Run#3Exh

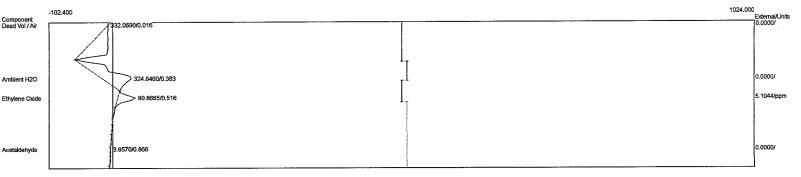
Analysis date: 09/16/2021 11:10:59 Method: Direct Injection Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-3E08.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.033	343.6530	0.0000	
Ambient H2O	0.383	331.5370	0.0000	
Ethylene Oxide	0.516	79.1960	4.9990	ppm
Acetaldehyde	0.833	1.4190	0.0000	
		755 9050	4 0000	


755.8050 4.9990 Lab name: ECSi
Client: Sterigenics Queensbury
Client ID: Run#3Exh
Analysis date: 09/16/2021 11:12:30
Method: Direct Injection
Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B

Column: 1% SP-1000, Ca Carrier: HELIUM Temp. prog: eto-100.tem

Components: eto2-100.cpt
Data file: 2SterQB2021-3E09.CHR (c:\peak359)

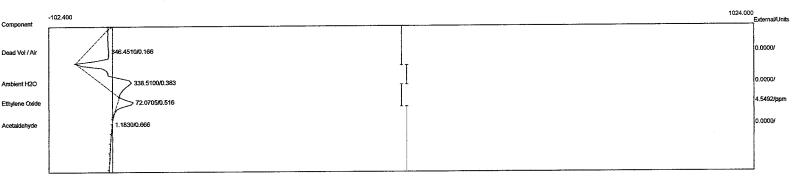
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air	0.016	332.0690	0.0000	
Ambient H2O	0.383	324.8460	0.0000	
Ethylene Oxide	0.516	80.8665	5.1044	ppm
Acetaldehyde	0.866	3.8570	0.0000	
		741 6205	E 1044	

741.6385 5.1044

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:13:45 Method: Direct Injection


Description: CHANNEL 2 - PID

Column: 1% SP-1000, Carbopack B Carrier: HELIUM

Temp. prog: eto-100.tem
Components: eto2-100.cpt
Data file: 2SterQB2021-3E10.CHR (c:\peak359)

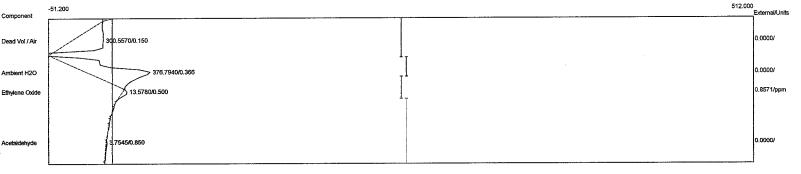
Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide Acetaldehyde	0.166 0.383 0.516 0.666	346.4510 338.5100 72.0705 1.1830	0.0000 0.0000 4.5492 0.0000	ppm
		750 04 45	4.5400	

758.2145 4.5492

Lab name: ECSi Client: Sterigenics Queensbury Client ID: Run#3Exh Analysis date: 09/16/2021 11:16:26 Method: Direct Injection


Description: CHANNEL 2 - PID
Column: 1% SP-1000, Carbopack B
Carrier: HELIUM

Temp. prog: eto-100.tem Components: eto2-100.cpt

Data file: 2SterQB2021-3E12.CHR (c:\peak359)

Sample: Ceilcote Scrubber Outlet

Operator: D. Kremer

Component	Retention	Area	External	Units
Dead Vol / Air Ambient H2O Ethylene Oxide Acetaldehyde	0.150 0.366 0.500 0.850	300.5570 376.7940 13.5780 3.7545	0.0000 0.0000 0.8571 0.0000	ppm
		694.6835	0.8571	

APPENDIX E

Field Data & Calculation Worksheets, Test Port Locations

ECSi, Inc.

Ethylene Oxide Mass Emissions Data and Calculations

Run #1 - Chamber 1 (Ceilcote Scrubber Outlet) Sterigenics, Inc. - Queensbury, NY **September 16, 2021**

				1-%H2O =	0.97	
<u>DeltaP</u>	SqRtDeltaP	Temp (F)	ppm EtO*	mw =	28.54	
				stack ID =	10	in.
0.18	0.4243	122	0.008	stack area =	0.545	sq. in.
0.18	0.4243	122	0.008	press =	29.85	
0.18	0.4243	122	0.008	Tstd =	528	
0.19	0.4359	122	0.008	Pstd =	29.92	
0.19	0.4359	122	0.008	Cp =	0.99	
0.19	0.4359	122	0.008	Kp =	85.49	
0.18	0.4243	122	0.008			
0.18	0.4243	122	0.008	Velocity =	29.8	ft/sec
0.18	0.4243	122	0.008	Flow =	857.1	dscfm
0.18	0.4243	122	0.008			
0.18	0.4243	122	0.008	MWeto =	44.05	
0.18	0.4243	122	0.008	MolVol =	385.32	
0.18	0.4243	122	0.008	ppmv/ft3 =	1000000	
0.18	0.4243	122	0.008			
0.18	0.4243	122	0.008	EtO Mass Flow =	80000008	lbs/min
0.18	0.4243	122	0.008			
				evac start =	1017	
Average =				evac stop =	1037	
0.1819	0.4265	122.0	800.0	min/cycle =	20	
	=	582	degR	EtO Emissions =	0.0000157	lbs/cycle

^{* 0.008} ppm is the Method Detection Limit established for this test, value indicates non-detected result

INLET CALCULATION:

Pre-Evac:	V = P = T = R = mw =	1155 17.1 118 10.73 44.05	ft3 in Hg Abs degF	Post-Evac:	V = P = T = R = mw =	1155 2.0 118 10.73 44.05	ft3 in Hg Abs degF
lbs EtO @	100% =	68.76	lbs	lbs EtO @	100% =	8.04	lbs
	_		Initial EtO Wt. / Ibs EtO @ er X Ibs EtO @ 1	` '	57.3 83.3 6.7	lbs % lbs	
FIIIdi E	IO - 70 EIO	_	ETO = Initial EtO	, ,	50.6	lbs	

CONTROL EFFICIENCY = 99.99997 %

ECSi, Inc.

Ethylene Oxide Mass Emissions Data and Calculations

Run #2 - Chamber 2 (Ceilcote Scrubber Outlet) Sterigenics, Inc. - Queensbury, NY September 16, 2021

				1-%H2O =	0.97	
<u>DeltaP</u>	<u>SqRtDeltaP</u>	Temp (F)	ppm EtO*	mw =	28.54	
				stack ID =	10	in.
0.18	0.4243	123	0.008	stack area =	0.545	sq. in.
0.18	0.4243	123	0.008	press =	29.85	
0.18	0.4243	123	0.008	Tstd =	528	
0.18	0.4243	123	0.426	Pstd =	29.92	
0.18	0.4243	123	0.008	Cp =	0.99	
0.19	0.4359	123	0.318	K p =	85.49	
0.19	0.4359	123	0.008			
0.19	0.4359	123	0.008	Velocity =	30.0	ft/sec
0.19	0.4359	123	0.008	Flow =	859.0	dscfm
0.18	0.4243	124	0.008			
0.18	0.4243	124	0.008	MWeto =	44.05	
0.19	0.4359	124	0.008	MolVol =	385.32	
0.18	0.4243	124	0.431	ppmv/ft3 =	1000000	
0.18	0.4243	124	0.299			
0.18	0.4243	124	0.008	EtO Mass Flow =	0.0000096	lbs/min
0.18	0.4243	124	0.008			
				evac start =	1038	
Average =				evac stop =	1059	
0.1831	0.4279	123.4	0.098	min/cycle =	21	
	=	583	degR	EtO Emissions =	0.0002024	lbs/cycle

^{* 0.008} ppm is the Method Detection Limit established for this test, value indicates non-detected result

INLET CALCULATION:

Pre-Evac:	V = P = T = R = mw =	1155 17.0 119 10.73 44.05	ft3 in Hg Abs degF	Post-Evac:	V = P = T = R = mw =	1155 2.0 117 10.73 44.05	
lbs EtO @ 1	100% =	68.24	lbs	lbs EtO @	100% =	8.06	lbs
	_	@ Chamb	Initial EtO : Wt. / Ibs EtO @ er X Ibs EtO @ 1 ETO = Initial EtO	00% (Post) =	54.7 80.2 6.5 48.2	lbs % lbs	

CONTROL EFFICIENCY = 99.99958 %

ECSi, Inc.

Ethylene Oxide Mass Emissions Data and Calculations

Run #3 - Chamber E (Ceilcote Scrubber Outlet) Sterigenics, Inc. - Queensbury, NY September 16, 2021

				1-%H2O =	0.97	
<u>DeltaP</u>	SqRtDeltaP	Temp (F)	ppm EtO	mw =	28.54	
				stack ID =	10	in.
0.18	0.4243	124	10.8	stack area =	0.545	sq. in.
0.18	0.4243	124	13.4	press =	29.85	
0.19	0.4359	124	10.1	Tstd =	528	
0.18	0.4243	124	8.90	Pstd =	29.92	
0.18	0.4243	124	6.06	Cp =	0.99	
0.18	0.4243	124	6.16	Kp =	85.49	
0.18	0.4243	124	4.40	·		
0.18	0.4243	124	5.00	Velocity =	29.9	ft/sec
0.19	0.4359	124	5.10	Flow =	855.2	dscfm
0.18	0.4243	124	4.55			
0.18	0.4243	124	2.98	MWeto =	44.05	
0.18	0.4243	124	0.857	MolVol =	385.32	
				ppmv/ft3 =	1000000	
Average =				••		
0.1817	0.4262	124.0	6.53	EtO Mass Flow =	0.0006380	lbs/min
	=	584	degR	evac start =	1101	
				evac stop =	1117	
				min/cycle =	16	
				FtO Fmissions =	0 0102074	lbs/cycle

EtO Emissions = 0.0102074 lbs/cycle

INLET CALCULATION:

Pre-Evac:	V =	1333	ft3	Post-Evac:	V =	1333	ft3
	P =	16.9	in Hg Abs		P =	2.0	in Hg Abs
	T =	119	degF		T =	118	degF
	R =	10.73			R =	10.73	
	mw =	44.05			mw =	44.05	
lbs EtO	@ 100% =	78.30	lbs	lbs EtO @	100% =	9.28	lbs

| Initial EtO = Scale Wt. = 64.2 | Ibs | 64.0 | 64.2 | 64.

CONTROL EFFICIENCY = 99.98196 %

^{* 0.008} ppm is the Method Detection Limit established for this test, value indicates non-detected result

ECSi - VELOCITY TRAVERSE DATA

Client:	Sterigenics, Inc.	Run #:	1	Date:	9/16/2021	Port Sketch
_ocation:	Queensbury, NY	Probe Type:	Std.	Baro Press:	29.45	
Source:	Ceilcote Packed Tower Scrubber Outlet	Stack I.D.:	10 in.	Static Press:	-0.01	

	Port 1									Port 2				
Inches			Del	lta P		Stack	Cyclonic			Delt	ta P		Stack	Cyclonic
From Port	Point#	Low	High	Average	Sq Root	Temp (F)	Angle	Point#	Low	High	Average	Sq Root	Temp (F)	Angle
0.33	1	0.17	0.17	0.17	0.4123	128	0	1	0.17	0.17	0.17	0.4123	128	0
1.0	2	0.17	0.18	0.175	0.4183	129	0	2	0.18	0.18	0.18	0.4243	128	0
1.9	3	0.18	0.18	0.18	0.4243	129	0	3	0.18	0.19	0.185	0.4301	129	0
3.3	4	0.18	0.19	0.185	0.4301	129	0	4	0.19	0.19	0.19	0.4359	129	0
6.8	5	0.19	0.19	0.19	0.4359	129	0	5	0.19	0.19	0.19	0.4359	129	0
8.1	6	0.19	0.19	0.19	0.4359	129	0	6	0.19	0.19	0.19	0.4359	129	0
9.00	7	0.18	0.19	0.185	0.4301	129	0	7	0.18	0.19	0.185	0.4301	129	0
9.7	8	0.17	0.18	0.175	0.4183	129	0	8	0.18	0.18	0.18	0.4243	129	0
	9							9						
	10							10						
	11							11						
	12							12						
	13							13						
	14							14						
	15							15						
	16							16						
	17							17						
	18							18						
	19							19						
	20							20						
	21							21						
	22							22						
	23							23						
	24							24						
									Avera	ge Values:	0.1825	0.4271	128.8	0.0

APPENDIX F

Gas Certifications

Praxair Distribution, Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

8/5/2020

Certificate Issuance Date:

Certification Date: 8/5/2020 Lot Number: 70340 0217 6D Part Number: NI EO1MP-A3

DocNumber: 237283 Expiration Date: 8/5/2022

Filling Method: Gravimetric

Customer & Order Information:

PRAXAIR PKG SANTA ANA CA HPS 1545 E EDINGER AVE. SANTA ANA, CA 92705-4907

Praxair Order Number: 71418069 Customer PO Number: 79410708

CERTIFICATE OF ANALYSIS

Primary Standard

Component	Requested Concentration (Molar)	Certified Concentration (Molar)	•	Analytical Uncertainty
Ethylene oxide	1 ppm	1.08 ppm	1	±5%
Nitrogen	Balance	Balance		-

Fill Date: 8/4/2020

Analysis Date: 8/5/2020

Cylinder Style: A3

Cylinder Pressure @ 70 F: 2000 psig

Cylinder Volume: 27.5 ft3 Valve Outlet Connection: CGA 350

Cylinder Number(s): FF63980

Analyst: Ronnie Popularas

QA Reviewer: Kristen Hanna

Key to Analytical Techniques:

Reference Analytical Instrument - Analytical Principle

Hewlett-Packard 6890 - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against. Praxair Distribution, Inc. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National Institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

Praxair Distribution, Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

Certificate Issuance Date:

8/20/2020

Certification Date: 8/20/2020

Lot Number: 70340 0231 1E Part Number: NI EO10MP-A3

DocNumber: 240056 Expiration Date: 8/19/2022

Customer & Order Information:

PRAXAIR PKG SANTA ANA CA HPS 1545 E EDINGER AVE. SANTA ANA. CA 92705-4907

Praxair Order Number: 71423449 Customer PO Number: 79416198

CERTIFICATE OF ANALYSIS

Primary Standard

Component	Requested Concentration (Molar)	Certified Concentration (Molar)	•	Analytical Uncertainty
Ethylene oxide	10 ppm	10.6 ppm	1	±1%
Nitrogen	Balance	Balance		

Cylinder Style: A3

Fill Date: 8/18/2020 Analysis Date: 8/19/2020 Filling Method: Gravimetric

Cylinder Pressure @ 70 F: 2000 psig Cylinder Volume: 28 ft3

Valve Outlet Connection: CGA 350 Cylinder Number(s): EA0011733

QA Reviewer: Jim Maurin

Key to Analytical Techniques:

Analytical Instrument - Analytical Principle Reference

Hewlett-Packard 6890 - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, or partial pressure techniques. The calibration standard provided is certified against. Praxair Distribution, Inc. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair Distribution. Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

Certificate Issuance Date:

4/20/2021

PRAXAIR PKG SANTA ANA CA HPS

1545 E EDINGER AVE, SANTA ANA, CA 92705

Customer & Order Information:

Praxair Order Number: 70953858 Customer PO Number: Verbal

Certification Date: 4/20/2021 Lot Number: 70340 9119 1F Part Number: NI EO100P-A3 DocNumber: 326205

Expiration Date: 4/20/2023

CERTIFICATE OF ANALYSIS

Primary Standard

Component	Requested Concentration (Molar)	Certified Concentration (Molar)		Analytical Uncertainty	
Ethylene oxide		100 ppm	1	± 1 %	
Nitrogen		Balance			

Analysis Date: 4/20/2020

Cylinder Style: A3

Fill Date: Recert.

Filling Method: Gravimetric

Cylinder Pressure @ 70 F: 1800 psig Cylinder Volume: 28.7 ft3

Valve Outlet Connection: CGA 350 Cylinder Number(s): EA9023428

Analyst: Ronnie Popularas

QA Reviewer:/

Key to Analytical Techniques:

Reference **Analytical Instrument - Analytical Principle**

Hewlett-Packard 6890 - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against. Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST). Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

IMPLACE AND The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair Distribution, Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700

Fax: 225-673-3531

Certificate Issuance Date: 4/7/2020

Certification Date: 4/7/2020

Lot Number: 70340 2517 4F Part Number: NI EO1000P-A3

DocNumber: 197405 Expiration Date: 4/7/2022

Customer & Order Information:

PRAXAIR PKG SANTA ANA CA HPS 1545 E EDINGER AVE, SANTA ANA, CA 92705-4907

Praxair Order Number: 71317148 Customer PO Number: Verbal

CERTIFICATE OF ANALYSIS

Primary Standard

Component	Requested Concentration (Molar)	Certified Concentration (Molar)	Analytical Reference	Analytical Uncertainty
Ethylene oxide		1,000 ppm	1	±1%
Nitrogen		Balance		

Cylinder Style: A3

Fill Date: Recert. Analysis Date: 4/6/2020

Filling Method: Gravimetric

Cylinder Pressure @ 70 F: 1100 psig Cylinder Volume: 30 ft3

Valve Outlet Connection: CGA 350 Cylinder Number(s): CLM002810

OA Reviewer: Jim Maurin

Key to Analytical Techniques:

Analytical instrument - Analytical Principle

Hewlett-Packard 6890 - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibra standard provided is certified against. Praxair Distribution, Inc. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National Institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

Praxair Distribution. Inc. ISO 9001 Registered 37256 Highway 30 Geismar, LA 70734 Tel: 225-677-7700 Fax: 225-673-3531

Certificate Issuance Date: 4/7/2020

Certification Date: 4/7/2020

Lot Number: 70340 2517 4F Part Number: NI EO10000P-A3

DocNumber: 197406 Expiration Date: 4/7/2022

Customer & Order Information:

PRAXAIR PKG SANTA ANA CA HPS 1545 E EDINGER AVE, SANTA ANA, CA 92705-4907

Praxair Order Number: 71317148 Customer PC Number: Verbal

CERTIFICATE OF ANALYSIS

Primary Standard

Component	Requested Concentration (Molar)	Certified Concentration (Molar)	,	Analytical Uncertainty
Ethylene oxide		10,100 ppm	1	±1%
Nitrogen		Balance		

Cylinder Style: A3

Cylinder Pressure @ 70 F: 600 psig Cylinder Volume: 30 ft3

Valve Outlet Connection: CGA 350 Cylinder Number(s): CLM005787

Filling Method: Gravimetric Fill Date: Recert. Analysis Date: 4/6/2020

QA Reviewer: Jim Maurin

Key to Analytical Techniques:

Analytical Instrument - Analytical Principle Reference

Hewlett-Packard 6890 - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibra standard provided is certified against. Praxair Distribution, Inc. Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc., While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

CERTIFICATE OF ANALYSIS

Customer Name:

Environmental Compliance Specialists, Inc

Stock / Analyzer Tag #:

A006-1040-50PNC

Customer Reference:

Verbal Dan

MESA Reference: Date of Certification: 124691 4/21/2021

Recommended Shelf Life:

2 Years

Cylinder Number:

CAL-4448

Product Class

Certified Standard

Cylinder Contents (1):

28 CF @ 2000 PSI

Cylinder CGA:

A006-HP-350/BR

Analysis Method:

GC-TCD

Preparation Method:

Gravimetric

Component

Requested

Concentration (2)

Reported

Concentration (2,3)

Ethylene Oxide

Nitrogen

50 ppm

Balance

52 ppm.

Balance

Authorized Signature:

(1) The fill pressure shown on the COA is as originally quoted. The fill pressure measured by the customer may differ from the fill pressure originally quoted due to temperature effects, compressibility of the individual components when blended together in the cylinder, gauge accuracy or reduction in content volume before shipping as a result of samples withdrawn for laboratory QC necessary to ensure product quality.

(2) Unless otherwise stated, concentrations are given in molar units.

(3) Vapor pressure mixes are blended at a sufficiently low pressure so as to eliminate phase separation under most low temperature conditions encountered during transport or storage. However, it is generally recommended that cylinders containing vapor pressure restricted mixes be placed on the floor in a horizontal position and rolled back and forth to improve homogeneity of the gas phase mixture before being put into service.

Analytical Gas Standards are prepared and analyzed using combinations of NIST traceable weights, SRM's provided by NIST, or internal gas standards that have been verified for accuracy using procedures published by the US-EPA. Pure gases are analyzed and certified for purity using minor component Analytical Gas Standards prepared according to the methods specified above. Balances are calibrated to NIST test weights covered by NIST test number 822/278982-10. Reference Certification #'s:1072/Z, 833/AB and

Calibration methods are in conformance with MIL-STD 45662A.

MESA Specialty Gazes & Equipment

division of MESA International Technologies, Inc. 2427 S. Anne St. • Santa Ana, California 92704 • USA TEL: 714-434-7102 • FAX: 714-434-8006 • E-mail: mail@mesagas.com On-line Catalog at www.mesagas.com **APPENDIX G**

Process Data

DDI ANTAR GYSTEM RU		DF V30-4 (2965749	79/15/21 T	i i	4:01	CYCLE 38 CHECK VALUE -18436
TIME	PRESS INHGA	TEMP (DEG F)			HED HED	ALARMS & MESSAGES ACTION TAKEN :
14:01	3.5	• • • • • • • • • • • • • • • • • • • •	93	Ø	39.5	
MAX : MIN :	4.0 3.5	12 % 118	163 93		40.8 25.4	PHASE 1:00 PHASE ELAPSED 1:00 CYCLE 2:25
			645 A (EO) P	HASE	
14:01	3.5	118	93	Ø	39.5	seresee== STERILANT 1 ===================================
14:02	4.6	118	94	Ø	42.2	
14:03	5.6	118	85	81	48. 1	
14204	6.5	118	83	133	49.7	
14:05	7.5	118	87	199	51.5	
14:06	8.7	118	89	256	53.2	
14:07	9.5	118	89	313	54.7	
14:03	10.6	118	93	370	56.2	
14:09	11.5	118	97	427	57.6	
14:10	12.8	118	100	484	58.7	
14:11	13.5	118	103	533	59.8	
14:12	14.6	118	105	591	61.2	
14:13	15.7	228	107	548	52. <u>1</u>	
14:14	16.7	118	108	703	63.3	
14:14	17.0	118	107	719	63. 3	

STERILANT USE	THIS PHASE:	57.3,	CYCLE TOTAL:	37.3

83 0 39.5

108 719 63.3

GAS	DWELL	(E0)	PHASE
-----	-------	------	-------

14.517 14.517 14.517 14.517		118 118 118 118	105 105 104 104 104	760 763 763	53.0 51.4 60.9 60.8 60.8	SHORT EX	(POSUR		OPERATOR CYC	OLE ABOR
MAX: MIN:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118 118	106 104	763 754	63.0 60.8	PH	HASE	0:01	PHASE ELAPSED CYCLE	0:01 2:41

PHASE 0:13 PHASE ELAPSED 0:13

CYCLE 2:38

AFTER VACUUM PHASE

14:17	17.1		118			753								
14:17	OPERAT	OR SEN	ISOR C	HECK	PR	58.8,	RH	ø,	JWT	121,	VLT	34,	V6X	104
				118,			PØ1	119,	PØS	FAIL,	PØS	FAIL,	P84	83
	P05	-	PØ5	- 88.			PØ8	88,	P09	88,	P10			
	P12	85.	P13	88,	P14	88,	P15	58,	P15	88,	P17	88,	Pia	38
	P13	88,	FZØ	88,	ETO	763,	H20	60.8,	WT	363. Ø				

14:17 'SYSTEM OPERATION VERIFIED

MAX: 17.0 MIN: 3.5

14:19 15.0 118 103 686 54.9

118

118

DDI ANTARES KORSCP V30-4 09/16/21 Thu 14:20 CYCLE 38 CHECK VALUE -18456 SYSTEM RUN W 2965749

TIME	PRESS INHGA	TEMP (DEG F) AVG					ALARMS	& MES	GAGES	o et la management de la composition d	ACTION	TAKEN	- Market de la constant de la consta
14:25 14:21	OPERAT CT1 PØS P12 P19 13.0	OR SENSOR CHE 118, CT2 88, P05 88, P13 87, P20 118	118, C 88, P 88, P 87, E	T3 07 14 T0 02	118, 87, 88, 536,	PØ1 PØ8 P15 H2D 49.4	118, 88, 88,	P02 P09 P16	FAIL, 88, 86,	P03 P10	FAIL, 88,	P 0 4 P11	102 88 88 87
	9.8 7.1 9.4 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1		4.4	96 96	439 352 271 211 165 131 106	38.4 33.1 27.9 23.4 19.7 17.3	EVACUAT	TION F	·RESSURE				
MAXI	2.0 17.1 2.0	117	44	0 4	105 763 106	6 0. 8	Loke	HASE	0: 19	PHA	SE ELAF Cy	SED SLE	0:19 3:01
			SAS	WAS	HAPI	ASE							
14:37 14:39		Para Para Para Para Para Para Para Para			105 123				ELEASE	<u> </u>	maker medici metadi yan un indake metah inda Apakur, kindak dinak etakan erreki etikan medi	u us gradu vons nach zum Kalasin verbreite aus einer	order to the contract
14:39	5. 1	117		97 97	117						OPERATO	R CYD	LE STOP
14:41 14:43		117 117		95	100								
14:45 14:47		117 117	•	95 95		14.5 14.6							
14:49	5.1	117		94	190	14.9							
14:51 14:53		117 117		94 93		15.0 15.0							
14:54	5.1	117					CYCLE 5	iTILL	STOPPED				
14:55 14:57	5.1 5.1	117 117		93 93		15.0 15.0							
14:59	5.1	117		92	100	15.0							
15:01 15:03		1 17 117		92 32		15.2 15.3				•			
15:05		4.20			100	15.5							
15:07 15:09						15.5 15.3							
15:09							CYCLE S	STILL	STOPPED				
15:11	5. 1	118		91	100	15.5							
15:13 15:15						15.6 15.7							
15:17	5. 1			91	100	15.9							
15:19	5.1 Postor	118 OR SENSOR CH E	~ h.	91 no	100	15.9	iā.	TLIT	1 24	u T	ac	uav	91
10101	OPERA:	TTAL CTA	11A. C	7.3	119.		119.		FAIL:	~ V 3	FALL	-1 <u>7</u> 14	5 /
	P05 P12	87, P 06	87, P	07 14	87, 87,	P08 P15	87, 87,	P 0 9 P16	87, 87,	P10 P17	87, 87,	P11 P18	87 87
15:29 () 15:20	SYSTEM	OPERATION VER	IFIED				ည ိ မ ျော်သ ⊸်စွ		many land survi St. Shr.	į	CYCLE E	ONTIN	UED

...

13	. P	hase) »	EO	Dwell	ı
----	-----	------	------------	----	--------------	---

	[°F]	[inHg]	[mg/l]	[lbs]	[mg/l]	[%]	
Date / Time	Avg. Chamber Gas Temp	Current Pressure	EO Conc. Current	EO Weight Used	Calc. AH	RH Sensor	
16-Sep-21							
14:28:44	119.0	17.0	724.2	0.0	41.8	N/A	
14:29:44	119.0	17.0	724.3	0.0	41.8	N/A	
14:30:44	119.0	17.0	724.3	0.0	41.4	N/A	
14:31:44	119.0	17.0	724.2	0.0	41.4	N/A	
14:32:44	118.9	17.0	724.2	0.0	41.8	N/A	
14:33:44	118.9	17.0	724.2	0.0	41.8	N/A	
14:34:44	118.9	17.0	724.3	0.0	41.4	N/A	
14:35:44	118.9	17.0	724.2	0.0	41.4	N/A	and the second s
14:36:44	118.8	17.0	726.5	0.0	41.4	N/A	
14:37:44	118.8	17.0	724.3	0.0	41.8	N/A	
14:38:40	118.8	17.0	724.3	0.0	41.8	N/A	

Step Gas Usage

ID	Gas	Drum S/N	Lot Number	Usage Value	
3,060	EO	E006043	UTLX930289G21	0.0lbs	

Device	Summary	Summary \	/alue	Specified Range
In-Spec. Time	Final	00:14:57		04:00:00 - 04:30:00
Total Phase Time	Final	00:14:57		n/a - N/A
TempAve	Min	118.8	°F	115.0 - 125.0 °F
TempAve	Max	119.1	°F	115.0 - 125.0 °F
PCurr	Min	17.0	inHg	16.5 - 18.0 inHg
PCurr	Min	17.0	inHg	n/a - 17.5 inHg
PCurr	Max	17.0	inHg	16.5 - 18.0 inHg
PCurr	Max	17.0	inHg	n/a - 17.5 inHg
RH Calc.	Min	N/A	%	N/A - N/A %
RH Calc.	Max	N/A	%	N/A - N/A %
AH Conc.	Min	41.4	mg/l	n/a - N/A mg/l
AH Conc.	Max	42.3	mg/l	n/a - N/A mg/l
EO Conc.	Min	721.1	mg/l	N/A - N/A mg/l
EO Conc.	Max	726.5	mg/l	N/A - N/A mg/l
EO Weight Used	Final	0.0	lbs	N/A - N/A lbs

14. Phase » Vacuum

CAS SU.7

(Phase No.12)

[°F] [inHg] Date / Avg. Current Chamber Pressure Time Gas Temp 16-Sep-21 14:38:40 17.0 118.8 14:39:41 118.7 15.5 14:40:41 118.6 14.5 13.6 14:41:41 118.4 14:42:41 118.3 12.7 11.7 14:43:41 118.1 14:44:41 10.7 117.9 117.9 9.7 14:45:41

EAS SHILBS

14.	Phase	» Va	cuun

	[°F]	[inHg]	
Date / Time	Avg. Chamber Gas Temp	Current Pressure	
16-Sep-21			
14:46:41	117.7	8.9	
14:47:41	117.6	7.9	
14:48:41	117.5	7.0	
14:49:41	117.4	6.1	
14:50:41	117.3	5.4	
14:51:41	117.2	4.7	
14:52:41	117.2	4.2	
14:53:41	117.2	3.7	
14:54:41	117.2	3.3	
14:55:41	117.2	2.9	
14:56:30	117.2	2.7	
14:56:30	117.2	2.7	
CUS .	/lichael Croce	Jr selected the 0	CAL function: cal
14:56:41	117.2	2.6	
14:57:41	117.2	2.4	
14:58:41	117.2	2.1	
14:59:21	117.3	2.0	STAND FROM A COMPANY OF THE PROPERTY OF THE PR
14:59:23	117.3	2.0	

Device	Summary	Summary Value	Specified Range
In-Spec. Time	Final	00:20:43	00:13:00 - 01:00:00
Total Phase Time	Final	00:20:43	n/a - N/A
TempAve	Min	117.2 °F	110.0 - 130.0 °F
TempAve	Max	118.8 °F	110.0 - 130.0 °F
PCurr	Final	2.0 inHg	1.5 - 2.5 inHg
PCurr	Final	2.0 inHg	n/a - N/A inHg

15. Phase » Nitrogen Inject

(Phase No.13 - 1)

Date / Time	[°F] Avg. Chamber Gas Temp	[inHg] Current Pressure	[mg/l] EO Conc. Current	
16-Sep-21				
14:59:23	117.3	2.0	82.2	AND
15:00:24	117.4	3.1	89.1	
15:01:24	117.6	4.1	93.6	A CHINA CONTRACTOR CON
15:02:24	117.8	5.1	93.6	
15:03:24	117.9	5.1	82.2	SSERVICE CONTROL CONTR
15:04:24	118.0	5.1	80.0	

Device	Summary	Summary Value	Specified Range
TempAve	Min	117.3 °F	110.0 - 130.0 °F
TempAve	Max	118.0 °F	110.0 - 130.0 °F

13. Phase » EO Dwell

Step Gas Usage

ID	Gas	Drum S/N	Lot Number	Usage Value
3,049	EO	E000836	UTLX930289G21	0.0lbs

Device	Summary	Summary \	/alue	Specified Range
In-Spec. Time	Final	00:00:33		04:00:00 - 04:30:00
Total Phase Time	Final	00:00:33		n/a - N/A
TempAve	Min	118.6	°F	115.0 - 125.0 °F
TempAve	Max	118.6	°F	115.0 - 125.0 °F
PCurr	Min	16.9	inHg	16.5 - 18.0 inHg
PCurr	Min	16.9	inHg	n/a - 17.5 inHg
PCurr	Max	17.0	inHg	16.5 - 18.0 inHg
PCurr	Max	17.0	inHg	n/a - 17.5 inHg
RH Calc.	Min	N/A	%	N/A - N/A %
RH Calc.	Max	N/A	%	N/A - N/A %
AH Conc.	Min	65.1	mg/l	n/a - N/A mg/l
AH Conc.	Max	65.5	mg/l	n/a - N/A mg/l
EO Conc.	Min	726.1	mg/l	N/A - N/A mg/l
EO Conc.	Max	730.7	mg/l	N/A - N/A mg/l
EO Weight Used	Final	0.0	lbs	N/A - N/A lbs
	has a measurement value	of 00:00:33. The	min specified v	alue is 04:00:00

14. Phase » Vacuum

(Phase No.12)

***************************************	[°F]	[inHg]	OHIE	0.42	
Date / Time	Avg. Chamber Gas Temp	Current Pressure		KUN)	64.2685
16-Sep-21					
15:01:13	118.6	16.9	kalasa kiringa dinangan dinangan tanggar tanggar kiringa kiringa panggar panggar kiringa kiringa panggar panggar		
15:02:14	118.6	16.0			
15:03:14	118.6	14.9		under kommunikativa (s. a.	
15:04:14	118.5	13.9			
15:05:14	118.5	13.0			i ugunggarangga pangga naggan anggan ang ang ang ang ang
15:06:14	118.5	11.9			
15:07:14	118.4	10.9			and a great state of the state of
15:08:14	118.4	9.9			
15:09:14	118.3	8.9			A CANADA S. CANADA BARANA MARANA C. 18 CO. AND A CO. AND A CO. AND A CO.
15:10:14	118.3	7.9			
15:11:14	118.3	6.9			
15:12:14	118.2	5.9			
15:13:14	118.1	5.0			
15:14:14	118.1	4.0			
15:15:14	118.1	3.2			
15:16:14	118.1	2.6			
15:17:14	118.1	2.1			a samortinauro-variable substitute a material de la figura
15:17:32	118.0	2.0			
15:17:34	118.0	2.0			

14. Phase » Vacuum

Device	Summary	Summary Value	Specified Range
In-Spec. Time	Final	00:16:21	00:13:00 - 01:00:00
Total Phase Time	Final	00:16:21	n/a - N/A
TempAve	Min	118.0 °F	110.0 - 130.0 °F
TempAve	Max	118.6 °F	110.0 - 130.0 °F
PCurr	Final	2.0 inHg	1.5 - 2.5 inHg
PCurr	Final	2.0 inHg	n/a - N/A inHg

15. Phase » Nitrogen Inject

(Phase No.13 - 1)

	[°F]	[inHg]	[mg/l]
Date / Time	Avg. Chamber	Current Pressure	EO Conc. Current
	Gas Temp		

16-Sep-21

15:17:34 118.0 2.0

96.8

Device	Summary	Summary Summary Valu		Specified Range	
TempAve	Min	118.0	°F	110.0 - 130.0 °F	
TempAve	Max	118.0	°F	110.0 - 130.0 °F	

Loop Summary

Repetition Count: 1

Device	Summary	Summary Value	Specified Range
Loop count	Final	1	2 - 2
Loop Duration	Sum	00:00:00	n/a - See Subphase
TempAve	Min	118.0 °F	n/a - See Subphase
TempAve	Max	118.0 °F	n/a - See Subphase
PCurr	Min	2.0 inHg	n/a - See Subphase
PCurr	Max	2.0 inHg	n/a - See Subphase
WRN Loop Count	t has not been met. Loop setpo	oint is 2 and repetition count is 1	

Queensbury Scrubber Performance Test Operating Conditions

Date: 16 September 2021

Record the following:	
Scrubber Operating Parameters	
Total gallons in primary and secondary	(gal.): 9100
Secondary reactor tank level (Tank 1) (in.): 15°>
Scrubber Liquor pH:	0.9
Scrubber glycol concentration*:	33%
Operations:	
Test Run 1 Chamber #:	
Test Run 2 Chamber #:	2
Test Run 3 Chamber #:	<u> </u>
Laure Hart	16 Sept 2021
Signature	Date

^{*}Sampled onsite with internal refractometer